Corals and their photosymbionts experience inherent changes in light along depth gradients, leading them to have evolved several well-investigated photoacclimation strategies. As coral calcification is influenced by light (a process described as LEC-'light-enhanced calcification'), studies have sought to determine the link between photosynthesis and calcification, but many puzzling aspects still persist. Here, we examine the physiology of , a coral species found at a wide range of depths but that is strictly mesophotic in the Red Sea; and also examines the coupling between photosynthesis and LEC by investigating the response of the coral under several controlled light regimes during a long-term experiment. specimens were collected from 40 to 50 m depth and incubated under three light conditions for a period of 1 year: full-spectrum shallow-water light (approx. 3 m, e.g. shallow-light treatment); blue deep-water light (approx. 40 m, e.g. mesophotic-light treatment) or total darkness (e.g. dark treatment). Net photosynthesis remained similar in the shallow-light-treated corals compared to the mesophotic-light-treated corals, under both low and high light. However, calcification increased dramatically with increasing light intensity in the shallow-light-treated corals, suggesting a decoupling between these processes. Photoacclimation to shallow-water conditions was indicated by enhanced respiration, a higher density of zooxanthellae per polyp and lower chlorophyll content per cell. The dark-treated corals became completely bleached but did not lower their metabolism below that of the mesophotic-light-treated corals. No clade shift was found following the year-long light treatments. We conclude that , and its original symbiont clade, can adapt to various light conditions by controlling its metabolic rate and growth energy investment, and consequently induce LEC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408387 | PMC |
http://dx.doi.org/10.1098/rsos.180527 | DOI Listing |
Open Res Eur
October 2024
Department of Process and Life Science Engineering, Division of Food and Pharma, LTH, Faculty of Engineering, Lund University, Lund, Skåne County, SE-221 00, Sweden.
Background: The NextFood Project ( www.nextfood-project.eu) started work in 2018 to identify 'Categories of Skills' that students should be equipped with to address the upcoming global challenges within agrifood and forestry disciplines, and involved concepts such as sustainability, technological adaptation and networking.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Photodermatology Unit, Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Visible light has been considered to have minimal impact on the skin. However, the increasing use of electronic devices has led to a significant increase in exposure to visible light, especially blue light. We measured the irradiance (mW/cm) and estimated dose (J/cm) of visible light and blue light emitted from various electronic devices including smartphones, tablets and computers.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland.
Purpose: The aim was to quantitatively evaluate the effectiveness of LED light therapy combined with photoacceptor substances having anti-acne properties in reducing the symptoms of acne vulgaris.
Patients And Methods: 15 subjects aged 20 to 24 who suffered from moderate or severe acne lesions. The treatments were performed using a LED device (465-880 nm).
Chem Sci
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.
View Article and Find Full Text PDFChem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!