Changes in Earth's surface elevation can be linked to the geodynamic processes that drive surface uplift, which in turn modulate regional climate patterns. We document hydrogen isotopic compositions of hydrated volcanic glasses and modern stream waters to determine late Cenozoic surface uplift across the Peruvian central Andes. Modern water isotopic compositions reproduce mean catchment elevations to a precision better than ±500 m (1σ). Glass isotopic data show a spatiotemporally variable transition from isotopically heavy to isotopically light compositions. The latter are consistent with modern water on the plateau. When interpreted in the context of published paleoelevation estimates and independent geological information, the isotopic data indicate that elevation rapidly increased by 2-2.5 km from 20-17 Ma in the central Western Cordillera, and from 15-10 Ma in the southern Western Cordillera and Altiplano; these patterns are consistent with foundering of mantle lithosphere via Rayleigh-Taylor instability. The Eastern Cordillera was slowly elevated 1.5-2 km between 25 and 10 Ma, a rate consistent with crustal shortening as the dominant driver of surface uplift. The Ayacucho region attained modern elevation by ~22 Ma. The timing of orographic development across southern Peru is consistent with the early Miocene onset and middle Miocene intensification of hyperarid conditions along the central Andean Pacific coast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424981 | PMC |
http://dx.doi.org/10.1038/s41598-019-41257-3 | DOI Listing |
Nat Commun
January 2025
Institute of Geophysics of the Czech Academy of Sciences, Prague, Czechia.
Volcano deformation can be detected over timescales from seconds to decades, offering valuable insights for magma dynamics. However, these signals are shaped by the long-term evolution of magmatic systems, a coupling that remains poorly understood. Here we integrate thermal models of crustal-scale magmatism with thermo-mechanical simulations of ground deformation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Tianjin University, Tianjin, 300072, China.
Taking the conducted model test by authors as the research object, this paper first carries out detailed numerical analysis and verifies the reliability of the established model. Furthermore, the test phenomenon is explained based on numerical analysis, while parameter analysis is carried out, which mainly includes soil deformation between piles and soil deformation inside and outside excavation. The research results show that when the inclination angle of the piles is small (such as 10°), all or most of the soil (the range of the pile top to 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Geology, R R Lalan College, Bhuj, India.
The Great Rann of Kachchh is a sabkha terrain with a thick succession of Quaternary to Late Holocene sediments, deposited during high sea level after the Last Glacial Maxima. Geomorphologically, the Great Rann of Kachchh is subdivided into Bet Zone, Linear Trench Zone, Great Barren Zone, and Banni Plain. The Bet zone is a slightly elevated flat surface comprising a complex network of bets and interbet channels-the geomorphic entities developed as complex interplay of sea level and coseismic tectonic activity during the Holocene.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
The Beijing-Tianjin-Hebei (Jing-Jin-Ji) Region is home to the most acute economic, resource, and environmental conflicts in the Bohai Sea region, and the rivers entering the sea carry abundant total nitrogen (TN) input into the Bohai Bay, which is the main land-based input causing eutrophication of the bay. The Haihe River Basin in the Jing-Jin-Ji Region was divided into 112 (2018-2019) and 187 (2020-2022) control units, and the spatial and temporal variations in TN concentration in the surface water of the Haihe River Basin in the Jing-Jin-Ji Region were systematically analyzed from 2018 to 2022 by combining the Euclidean distance analysis method and the K-means clustering analysis method. The results showed that the annual average concentration of TN in the region showed a trend of decreasing (2018-2020) and then increasing (2021-2022), in which the concentration of TN increased significantly from June 2021 to June 2022.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China. Electronic address:
Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!