Extenuation of in utero toxic effects of MeHg in the developing neurons by Fisetin via modulating the expression of synaptic transmission and plasticity regulators in hippocampus of the rat offspring.

Chem Biol Interact

Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India. Electronic address:

Published: May 2019

The neurotoxic environmental contaminant, methylmercury (MeHg), has shown to have detrimental effects on the developing brain when exposed during gestation. We have shown in our earlier studies that gestational administration of 3,3',4',7-Tetrahydroxyflavone or Fisetin reduces the toxic effects of MeHg in the developing rat brain. The current study has pivoted to study the mechanism behind the mitigating action of Fisetin against prenatal MeHg exposure induced neurotoxicity. Negligible data is available about the toxicity targets of MeHg in the developing brain. Studies have exhibited that MeHg exposure cause toxic effects on synaptic transmission and plasticity in the offspring brain. Hence, we aimed to study the effect of Fisetin on MeHg induced alterations in the expressions of regulatory genes and proteins involved in synaptic plasticity and transmission. Pregnant rats were grouped according to the type of oral administration as, (i) Control, (ii) MeHg (1.5 mg/kg b. w.), (iii) MeHg + Fisetin (30 mg/kg b. w.) and (iv) Fisetin (30 mg/kg b. w). Maternal administration of Fisetin prevented MeHg exposure induced downregulation of neurogranin (Nrgn), dendrin (Ddn), Syntaxin 1 A (Stx1a), Lin-7 homolog A (Lin7a), Complexin-2 (Cplx2) and Exocyst complex component 8 (Exoc8) genes in the offspring rat. Fisetin also prevented MeHg exposure induced downregulation of brain derived neurotrophic factor (BDNF), Glial-cell derived neurotrophic factor (GDNF) protein expressions and hampered reactive astrogliosis in the hippocampus of F generation rats. Hence, through this study, we conclude that Fisetin modulates the expression of regulatory genes and proteins involved in synaptic transmission and plasticity and extenuates MeHg neurotoxicity in the developing rat brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2019.03.014DOI Listing

Publication Analysis

Top Keywords

mehg exposure
16
toxic effects
12
mehg developing
12
synaptic transmission
12
transmission plasticity
12
exposure induced
12
mehg
11
effects mehg
8
fisetin
8
developing brain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!