Cardiovascular responses to centrally administered thyrotropin-releasing hormone (TRH) were studied in urethan-anesthetized rats to allow continuous recording of attendant changes in sympathetic nerve activity. Intracerebroventricular infusions of TRH (0.05-5.0 micrograms) consistently increased not only blood pressure and heart rate, but also spike frequency in splanchnic, renal, or cervical sympathetic nerves. Parasympathetic inhibition seemed unlikely because TRH responses were unaltered by cholinergic blockade with atropine, and efferent vagal nerve firing, instead of being reduced, was actually increased by TRH. An increased secretion of endogenous vasopressin also appeared unlikely, since TRH responses were essentially unaffected by either hypophysectomy or pretreatment with a vasopressin antagonist. Inasmuch as pharmacological ganglion blockade with pentolinium eliminated increases in splanchnic nerve firing but reduced the attendant tachycardia by only 50%, residual tachycardia after ganglion blockade was considered partly due to persistent sympathetic cardioaccelerator tone. On the other hand, because pressor responses to TRH were always accompanied by increased sympathetic nerve firing and were completely abolished after pentolinium-induced ganglioplegia, they were attributed solely to sympathetic hyperactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1986.251.1.H86DOI Listing

Publication Analysis

Top Keywords

nerve firing
12
pressor responses
8
thyrotropin-releasing hormone
8
sympathetic nerve
8
trh responses
8
firing reduced
8
ganglion blockade
8
trh
6
responses
5
sympathetic
5

Similar Publications

Identification of Unique Binding Mode Anti-NTF3 Antibodies from a Novel Long VH CDR3 Phage Display Library.

SLAS Discov

January 2025

Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK. Electronic address:

Neurotrophic factor 3 (NTF3) is a cysteine knot protein and a member of the nerve growth factor (NGF) family of cytokines. NTF3 engages the Trk family of receptor tyrosine kinases, playing a pivotal role in the development and function of both the central and peripheral nervous systems. Its involvement in neuronal survival, differentiation, and growth links NTF3 to a spectrum of neurodegenerative diseases.

View Article and Find Full Text PDF

Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!