Currently, there are approximately 170 million hyperuricemia patients in China. Conventional drug therapy has limited clinical benefits and may induce serious side effects. Enzyme replacement therapy has attracted much attention owing to its advantages of strong specificity, small dosage, and remarkable curative effect. Uricase is an efficient oxidase, which can oxidize uric acid to allantoin and hydrogen peroxide, to reduce the uric acid level. In this study, we used a mild biomimetic method to prepare a novel uricase and horseradish peroxidase (HRP) loaded CaHPO₄ nanoflower (uricase&HRP-CaHPO₄ nanoflower). The nanoflower was then integrated with a hyaluronic acid dissolvable microneedle system (uricase&HRP-CaHPO₄ @HA MN) to achieve transdermal drug delivery for the treatment of hyperuricemia, which has high patient compliance. In this system, the stability and catalytic activity of uricase could be improved by the CaHPO₄ nanoflower, and HRP could decompose the hydrogen peroxide to accelerate the reaction of uricase. An study demonstrated that the uricase&HRP-CaHPO₄ @HA MN could effectively reduce the uric acid level of blood as intravenous injection without side effects. Thus, this uricase&HRP-CaHPO₄ @HA MN can facilitate transcutaneous hyperuricemia treatment and provide a new alternative for the exploration of clinical treatment of hyperuricemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2019.2752 | DOI Listing |
Nanoscale
January 2025
School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
Engineering the local electronic structure of single atom catalysts (SACs) still remains challenging. In this study, a Ru-NiS single atom catalyst with a controlled S coordination environment, where Ru single atoms are implanted on a NiS nanoflower consisting of plenty of cross-linked nanosheets, has been developed a facile atom capture strategy. Using Density Functional Theory (DFT) calculations, it has been revealed that the fine-tuned local S coordination environment can optimize the electronic structure of Ru active sites, and reduce the energy barrier of the rate-determining step for the oxygen evolution reaction (OER), thus boosting the electrocatalytic activity, such as a low overpotential of 269 mV at 10 mA cm.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Physics, RPS Degree College, Balana, Mahendergarh, Haryana 123029, India.
The present work reports a clear and improved hydrothermal methodology for the synthesis of MoSe nanoflowers (MNFs) at 210 °C. To observe the effect of temperature on the fascinating properties, the process temperature was modified by ±10 °C. The as-prepared MNFs were found to consist of 2D nanosheets, which assembled into a 3D flower-like hierarchical morphology van der Waals forces.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China. Electronic address:
The chiral alcohols (S)-4-chloro-3-hydroxy-butyric acid ethyl ester ((S)-CHBE) is a critical intermediate in the synthesis of various active pharmaceutical ingredients. This study presents the first investigation of the efficient production of (S)-CHBE using organic-inorganic hybrid nanoflowers (GDH-CR@HNFs) for the co-immobilization of glucose dehydrogenase (BsGDH) and carbonyl reductase (BsCR). By optimizing immobilization conditions, we significantly enhanced the catalytic activity and immobilization efficiency of the hybrid nanoflowers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFSmall
January 2025
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.
Exploring highlyefficient electrocatalysts for overall water splitting is a challenging butnecessary task for development of green and renewable energy. Herein, PtIrFeCoNi high-entropy alloy nanoflowers (HEA NFs) withstrong 3d-5d orbital hybridization were fabricated to achieve highly efficientoverall water splitting at high current density. The PtIrFeCoNi HEA NFs achieved a 57.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!