Background: Viruses are important components of microbial communities modulating community structure and function; however, only a couple of tools are currently available for phage identification and analysis from metagenomic sequencing data. Here we employed the random forest algorithm to develop VirMiner, a web-based phage contig prediction tool especially sensitive for high-abundances phage contigs, trained and validated by paired metagenomic and phagenomic sequencing data from the human gut flora.
Results: VirMiner achieved 41.06% ± 17.51% sensitivity and 81.91% ± 4.04% specificity in the prediction of phage contigs. In particular, for the high-abundance phage contigs, VirMiner outperformed other tools (VirFinder and VirSorter) with much higher sensitivity (65.23% ± 16.94%) than VirFinder (34.63% ± 17.96%) and VirSorter (18.75% ± 15.23%) at almost the same specificity. Moreover, VirMiner provides the most comprehensive phage analysis pipeline which is comprised of metagenomic raw reads processing, functional annotation, phage contig identification, and phage-host relationship prediction (CRISPR-spacer recognition) and supports two-group comparison when the input (metagenomic sequence data) includes different conditions (e.g., case and control). Application of VirMiner to an independent cohort of human gut metagenomes obtained from individuals treated with antibiotics revealed that 122 KEGG orthology and 118 Pfam groups had significantly differential abundance in the pre-treatment samples compared to samples at the end of antibiotic administration, including clustered regularly interspaced short palindromic repeats (CRISPR), multidrug resistance, and protein transport. The VirMiner webserver is available at http://sbb.hku.hk/VirMiner/ .
Conclusions: We developed a comprehensive tool for phage prediction and analysis for metagenomic samples. Compared to VirSorter and VirFinder-the most widely used tools-VirMiner is able to capture more high-abundance phage contigs which could play key roles in infecting bacteria and modulating microbial community dynamics.
Trial Registration: The European Union Clinical Trials Register, EudraCT Number: 2013-003378-28 . Registered on 9 April 2014.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425642 | PMC |
http://dx.doi.org/10.1186/s40168-019-0657-y | DOI Listing |
Environ Sci Technol
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
Recent advancements in viral metagenomics and single-virus genomics have improved our ability to obtain the draft genomes of environmental viruses. However, these methods can introduce virus sequence contaminations into viral genomes when short, fragmented partial sequences are present in the assembled contigs. These contaminations can lead to incorrect analyses; however, practical detection tools are lacking.
View Article and Find Full Text PDFFoodborne Pathog Dis
January 2025
Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India.
is a recently described species that can be differentiated from . However, in clinical settings, they are frequently misidentified as . In this study, our objective was to conduct genomic characterization and bioinformatics analysis of subsp.
View Article and Find Full Text PDFMicrob Pathog
February 2025
Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, China. Electronic address:
The medicinal beetle Blaps rynchopetera is recognized for its antibacterial, anti-inflammatory, and immune-regulating properties. This study utilized metaviromics technology to systematically characterize the viral community within the gut of B. rynchopetera through high-throughput sequencing of gut contents, with a specific focus on the composition of its bacteriophage community.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia.
We present lung virome data recovered through shotgun metagenomics in bronchoalveolar lavage fluid from an infant with cystic fibrosis, who tested positive for infection. Using a bioinformatic pipeline for virus characterization in shotgun metagenomic data, we identified five viral contigs representing Pseudomonas phages classified as Caudoviricetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!