Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334652PMC

Publication Analysis

Top Keywords

neuroradiologic features
4
features primary
4
primary falx
4
falx osteosarcoma
4
neuroradiologic
1
primary
1
falx
1
osteosarcoma
1

Similar Publications

Detecting IDH and TERTp mutations in diffuse gliomas using H-MRS with attention deep-shallow networks.

Comput Biol Med

January 2025

Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey; Center for Neuroradiological Applications and Research, Acibadem University, Istanbul, Turkey.

Background: Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.

Methods: This study included H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type).

View Article and Find Full Text PDF

Background: Intracranial choroid plexus tumors (CPT) are rare and primarily affect young children. Leptomeningeal dissemination (LMD) has been reported not only in high-grade choroid plexus carcinoma (CPC) but also in lower histological grades; however, a systematic evaluation of CPT-specific imaging characteristics remains lacking.

Methods: We analyzed the imaging characteristics of LMD in a single-center pediatric cohort of 22 CPT patients (thirteen choroid plexus papilloma (CPP), six atypical choroid plexus papilloma (aCPP), three CPC), comparing LMD features with those of the primary tumor.

View Article and Find Full Text PDF

Non-Thrombotic Filling Defects in Cerebral Veins and Sinuses: When Normal Structures Mimic a Disease.

Neurol Int

January 2025

Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.

Cerebral venous thrombosis (CVT) is a rare and potentially critical cerebrovascular disease involving intracranial dural sinuses and veins. The diagnosis is a stepwise pathway starting from clinical suspicion and employing several neuroradiological techniques, mainly Computed Tomography (CT)-based and Magnetic Resonance Imaging (MRI)-based modalities. The neuroradiological findings, both in the diagnostic phase and in the follow-up phase, may provide some results at risk for misdiagnosis.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Cerebrotendinous xanthomatosis (CTX) is a rare but treatable inherited neurometabolic disorder that can lead to severe sequelae if left untreated. Chenodeoxycholic acid is a safe and effective treatment for CTX. Early diagnosis is essential to improve patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!