Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO/WO composites: mechanism and degradation pathway.

J Hazard Mater

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China; School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China.

Published: June 2019

Pulsed discharge plasma (PDP) combined with TiO/WO composites for chloramphenicol (CAP) degradation was investigated. The prepared TiO/WO composites were characterized by scanning electron microscope, transmission electron microscope, nitrogen adsorption apparatus, zeta sizer, X-ray diffraction, Raman spectra, UV-Vis absorption spectroscopy, X-ray photoelectron spectroscopy, photocurrent and electrochemical impedance spectroscopy. The degradation performance showed that the addition of TiO/WO composites significantly enhanced the removal efficiency of CAP in PDP system. At a peak voltage of 18 kV, the highest removal efficiency of CAP could reach 88.1% in PDP system with 4 wt% TiO/WO, which was 36.8% and 26.0% higher than that in sole PDP system and PDP/TiO system, respectively. The TiO/WO composites significantly accelerated interfacial charge transfer process compared to the pure TiO. Besides, the effect of catalyst dosage and peak voltage on CAP removal was evaluated. OH, OO, h and high-energy electrons contributed to CAP degradation in PDP-TiO/WO system. Addition of TiO/WO composites can decompose O and produce more OH and HO. The degradation intermediates were measured by liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC). The cycling degradation experiment showed that the TiO/WO composites have good reusability as well as stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.03.051DOI Listing

Publication Analysis

Top Keywords

tio/wo composites
28
pdp system
12
pulsed discharge
8
discharge plasma
8
tio/wo
8
combined tio/wo
8
cap degradation
8
electron microscope
8
addition tio/wo
8
removal efficiency
8

Similar Publications

Isoelectric Point of Metal Oxide Films Formed by Anodization.

Langmuir

January 2025

Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.

The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.

View Article and Find Full Text PDF

Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.

View Article and Find Full Text PDF

A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals.

ACS Cent Sci

December 2024

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.

View Article and Find Full Text PDF

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

New photocatalytic materials based on complex oxides and a widely used and cheap polymer (PMMA) have been prepared. Among complex oxides previously investigated, the following have been used-RbTeWO, CsTeMoO, CsVTeO, NaVMoO, KVMoO. For comparison, the binary oxides TiO and WO were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!