Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal.

J Hazard Mater

College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.

Published: June 2019

Novel gel materials are proposed for fire prevention and extinction in coal mines, where spontaneous combustion of coal continues to pose a significant risk. Cationic polyacrylamide (CPAM), anionic polyacrylamide (HPAM), and carboxymethyl cellulose (CMC) were each introduced separately into a sodium silicate (WG) gel, to obtain three gels labeled as CPAM/WG, HPAM/WG, and CMC/WG. A crosslinking agent, aluminum citrate, was subsequently added to the HPAM/WG and CMC/WG gels to afford two novel interpenetrating network hydrogels, HPAM-Al/WG and CMC-Al/WG, respectively. Among the various gels, the HPAM-Al/WG hydrogel exhibits the best seepage capacity, water retention capacity, compressive strength, and inhibition characteristics, which effectively resolve the post-water-loss cracking and pulverization problems commonly associated with inorganic consolidated silica gels. The microstructures of all the gels were investigated by scanning electron microscopy and their inhibitory effects on the oxidation of hydroxyl and methylene groups in coal at high temperatures were analyzed by Fourier transform infrared spectroscopy. Elemental mapping by energy dispersive X-ray spectroscopy indicated that the inorganic silica gel blends uniformly with the polymeric gel. Fire extinction experiments indicated that the HPAM-Al/WG gel reduces the fire-source temperature, heat radiation, and CO generation. Thus, the HPAM-Al/WG gel is an ideal fire prevention and extinction material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.03.041DOI Listing

Publication Analysis

Top Keywords

spontaneous combustion
8
combustion coal
8
fire prevention
8
prevention extinction
8
hpam/wg cmc/wg
8
hpam-al/wg gel
8
gels
6
gel
6
novel sodium
4
sodium silicate/polymer
4

Similar Publications

Study on the law of air leakage in goaf under the influence of double-series coal seam mining.

Heliyon

January 2025

CCRI Tongan (Beijing) Intelligent Control Technology Co., Ltd, Beijing, 100013, China.

In order to solve the engineering problem of a large amount of wind leakage in the 8106 comprehensive mining working face of the Carboniferous System under the influence of overlapping mining of two coal seams in Yongdingzhuang Mine, Datong Mining Area, this paper utilizes finite element numerical simulation software to study the wind leakage characteristics of the 8106 working face and the distribution range of the spontaneous combustion "three zones" of the mining area. The results show that, under the condition of external air leakage, the internal pressure of the goaf is greater than the external pressure, the upper pressure is greater than the lower pressure, and the seepage direction is from the top down and from the inside out. Under the condition of no external air leakage, the air leakage source is mainly concentrated in the air inlet lane.

View Article and Find Full Text PDF

In this work, the coprecipitation approach was successfully used to create Mg-Al hydrotalcite-like inhibitors modified with varying amounts of Zn, and their characteristics were assessed. The findings indicate that the flame retardancy of Mg-Al hydrotalcite (MgAl-LDHs) is not significantly affected by Zn content. By adding MgAl-LDHs, the temperature at which the exothermic reaction started to occur was raised from 146.

View Article and Find Full Text PDF

To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.

View Article and Find Full Text PDF

A Self-Phase Separated Electrolyte toward Durable and Rollover-Stable Zinc Metal Batteries.

J Am Chem Soc

January 2025

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Aqueous zinc (Zn) metal batteries (ZMBs) have received great attention due to their safety and environmental friendliness. Although aqueous electrolytes facilitate fast kinetics in metal oxide cathodes, their incompatibility with the Zn metal anodes triggers severe hydrogen evolution reaction (HER) and dendrite growth. Herein, a self-phase separated electrolyte (SPSE) is proposed to fulfill the contradictory requirements of the anode and cathode in ZMBs.

View Article and Find Full Text PDF

In order to accurately investigate the key microstructures in the spontaneous combustion exothermic process of coal, an ultrasonic extraction method was employed to extract the coal, and the complex microscopic groups within it were stripped and studied. On this basis, Fourier transform infrared spectroscopy and differential scanning calorimetry were employed to assess the content of microscopic groups and the exothermic characteristics of the raw and extracted coal samples. The findings indicated that toluene and methanol demonstrated a notable capacity for extracting aromatic and aliphatic hydrocarbon compounds from coal, whereas -methyl pyrrolidone (NMP) and ethylenediamine (EDA) exhibited a pronounced effect on oxygen-containing functional groups and hydroxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!