Estrogen influences myosin phosphorylation and post-tetanic potentiation in murine fast muscle. We tested the hypothesis that this influence is mediated by estrogen effects on skeletal myosin light chain kinase (skMLCK) activity. To this end, extensor digitorum longus muscles from female wildtype and skMLCK-absent (skMLCK) mice were grouped as follows: ovariectomized with estrogen (E+), ovariectomized without estrogen (E-), sham surgery, and intact baseline. At 8 weeks of age, the ovariectomized groups were ovariectomized followed by implantation of either a 0.1 mg 17β-estradiol (E+) or placebo pellet (E-). Two weeks later, muscles were isolated and suspended in vitro (25° C) for determination of regulatory light chain phosphorylation and post-tetanic potentiation. Regulatory light chain phosphorylation was not different across conditions within either genotype although wildtype values were significantly greater than skMLCK values. Consistent with this, the potentiation of concentric twitch force was similar between E+ and E- groups within each genotype but wildtype values were greater than skMLCK values. However, unaltered estradiol levels following ovariectomy, likely due to previously underappreciated confounds of mouse age, development, and growth during estrogen supplementation, prevented direct testing of the hypothesis. Future studies should note the importance of estrous cycles and continuing physiological developments of young adult mice when working with ovarian hormones.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjpp-2018-0575DOI Listing

Publication Analysis

Top Keywords

phosphorylation post-tetanic
12
post-tetanic potentiation
12
light chain
12
myosin phosphorylation
8
young adult
8
ovariectomized estrogen
8
regulatory light
8
chain phosphorylation
8
genotype wildtype
8
wildtype values
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!