Enhanced High-Resolution Triboelectrification-Induced Electroluminescence for Self-Powered Visualized Interactive Sensing.

ACS Appl Mater Interfaces

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China.

Published: April 2019

Transforming dynamic mechanical interactions into visualized luminescence represents a research frontier in the detection of tactile stimuli. Here, we report a self-powered high-resolution triboelectrification-induced electroluminescence (HR-TIEL) sensor for visualizing the contact profile and dynamic trajectory of a contact object. As dynamic interactions occur, triboelectric charges at the contact interface generate a transient electric field that excites the phosphor. From the numerical simulation, a conductive layer based on transparent silver nanowires (AgNWs) guides the direction of the electric field and confines it within the profile boundary of the connect object. As a result, a sharp change of the electric field at the profile boundary greatly promotes the luminescence intensity as well as the lateral spatial resolution. Compared to a triboelectrification-induced electroluminescence (TIEL) sensor without the conductive layer, the luminescence intensity is enhanced by 90%, and the lateral spatial resolution of ∼500 μm is achieved. The HR-TIEL sensor is then demonstrated to reveal the surface texture on a nitrile glove. It relies on neither additional power supplies nor complex wiring/circuit design. This work paves the way for the feasible detection of tactile stimuli such as touch and slipping, which will be potentially used in robotics, human-machine interface, flexible and wearable electronics, and so forth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02313DOI Listing

Publication Analysis

Top Keywords

triboelectrification-induced electroluminescence
12
electric field
12
high-resolution triboelectrification-induced
8
detection tactile
8
tactile stimuli
8
hr-tiel sensor
8
conductive layer
8
profile boundary
8
luminescence intensity
8
lateral spatial
8

Similar Publications

The growth of the Internet of Things has focused attention on visualized sensors as a key technology. However, it remains challenging to achieve high sensing accuracy and self-power ability. Here, we propose a self-powered visualized tactile-acoustic sensor (SVTAS) based on an elaborated triboelectrification-induced electroluminescence (TIEL) unit.

View Article and Find Full Text PDF

Persistent triboelectrification-induced electroluminescence (TIEL) is highly desirable to break the constraints in the transient-emitting behavior of existing TIEL technologies as it addresses the hindrance caused by incomplete information in optical communication. In this work, a novel self-powered persistent TIEL material (SP-PTM) has been created for the first time, by incorporating the long-afterglow phosphors SrAlO:Eu, Dy (SAOED) in the material design. It was found that the blue-green transient TIEL derived from ZnS:Cu, Al serves as a reliable excitation source to trigger the persistent photoluminescence (PL) of SAOED.

View Article and Find Full Text PDF

Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction.

Adv Sci (Weinh)

November 2022

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

Self-powered tactile sensor with versatile functions plays a significant role in the development of an intelligent human-machine interaction (HMI) system. Herein, a hybrid self-powered porous-structured tactile sensor (SPTS) is proposed by monolithically integrating a porous triboelectrification-induced electroluminescence (TIEL) component and a single-electrode triboelectric nanogenerator with the high charge generation in the bulk volume. At a low pressure of 10 kPa, TIEL intensity can be significantly improved by three times, which is superior to that in previous reports, with enhanced triboelectricity.

View Article and Find Full Text PDF

Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu.

ACS Appl Mater Interfaces

January 2022

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P.R. China.

The related studies and applications of ZnS-based phosphorescent materials involve various aspects such as lighting, display, sensing, electronic signatures, and confidential information. Here, triboelectrification-induced electroluminescence (TIEL) of the ZnS:Cu due to the triboelectric leakage field is discovered via a gently horizontal sliding between a ZnS:Cu particle-doped polydimethylsiloxane (PDMS) film and a polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) film, whose intensity is positively correlated with the temperature, the doping ratio of ZnS:Cu, the pressure, and the frequency. It is also demonstrated that the TIEL mainly occurs inside the bulk film, where the ZnS:Cu phosphor particles can be polarized instantaneously by the leakage electric field of triboelectrification.

View Article and Find Full Text PDF

Stretchable Hybrid Bilayered Luminescent Composite Based on the Combination of Strain-Induced and Triboelectrification-Induced Electroluminescence.

ACS Omega

December 2019

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, and Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

High luminescence intensity from materials that are excited by external stimuli is highly desired. In this work, a stretchable hybrid luminescent composite (HLC) that has multiple luminescence modes is reported. The luminescence can be excited either by externally applied mechanical strain or by a moving object that slides against the HLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!