The commentary by Luyck and colleagues on our paper provides many stimulating viewpoints and interpretations of our original study on dissociable responses in the amygdala and bed nucleus of the stria terminalis in threat processing. Here, we reply to some of the points raised and while agreeing with most of the comments also provide some alternative viewpoints. We end by putting forward a research agenda for how to further investigate the roles of these regions in threat processing, with an emphasis on studying their roles in defensive action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560019PMC
http://dx.doi.org/10.1007/s11065-019-09401-yDOI Listing

Publication Analysis

Top Keywords

defensive action
8
threat processing
8
roles amygdala
4
amygdala basal
4
basal forebrain
4
forebrain defense
4
defense reply
4
reply luyck
4
luyck implications
4
implications defensive
4

Similar Publications

Spectrum sensing is a key technology and prerequisite for Transform Domain Communication Systems (TDCS). The traditional approach typically involves selecting a working sub-band and maintaining it without further changes, with spectrum sensing being conducted periodically. However, this approach presents two main issues: on the one hand, if the selected working band has few idle channels, TDCS devices are unable to flexibly switch sub-bands, leading to reduced performance; on the other hand, periodic sensing consumes time and energy, limiting TDCS's transmission efficiency.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) and exosomes are essential mediators of host-pathogen interactions. Elucidating their mechanisms of action offers valuable insights into diagnosing and treating infectious diseases and cancers. However, the specific interactions of () with host cells via OMVs and exosomes in modulating host immune responses have not been thoroughly investigated.

View Article and Find Full Text PDF

Targeting oxidative stress in preeclampsia.

Hypertens Pregnancy

December 2025

School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.

Preeclampsia is a complex condition characterized by elevated blood pressure and organ damage involving kidneys or liver, resulting in significant morbidity and mortality for both the mother and the fetus. Increasing evidence suggests that oxidative stress, often caused by mitochondrial dysfunction within fetal trophoblast cells may play a major role in the development and progression of preeclampsia. Oxidative stress occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defenses, which can lead to placental cellular damage and endothelial cell dysfunction.

View Article and Find Full Text PDF

Abelmoschus manihot flower (AMF), commonly cultivated in Southern China, is homology of medicine and food. In this study, microscopic observation revealed the microstructure of AMF, including upper epidermal cells and nonglandular hairs that play roles in defense and water management. Physicochemical analyses indicated that AMF powder exhibits weak acidity and low moisture content, suggesting its stability.

View Article and Find Full Text PDF

Isoquinolinequinone N-oxides with diverging mechanisms of action induce collateral sensitivity against multidrug resistant cancer cells.

Eur J Pharmacol

December 2024

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal. Electronic address:

Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!