Size-controlled Pt nanoparticles were prepared on multi-wall carbon nanotubes (MWCNTs) decorated with polypyrrole matrix overlayers and exhibited superior oxygen reduction reaction (ORR) performance as electrocatalysts. The copolymerization of a new Pt-pyrrole complex and pyrrole monomer in the presence of MWCNTs produced size-controlled Pt nanoparticles with diameters of 1.5 ± 0.5 nm. The present size-controlled Pt nanoparticles showed better durability than non-regulated Pt nanoparticles without polypyrrole and a commercial Pt/C catalyst during the ORR at the fuel cell cathode without substantial aggregation of the size-controlled Pt nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt00158a | DOI Listing |
Biosens Bioelectron
March 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFACS Omega
December 2024
DTU Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
Magnetron sputtering is a versatile method for investigating model system catalysts thanks to its simplicity, reproducibility, and chemical-free synthesis process. It has recently emerged as a promising technique for synthesizing δ-NiGa thin films. Physically deposited thin films have significant potential to clarify certain aspects of catalysts by eliminating parameters such as particle size dependence, metal-support interactions, and the presence of surface ligands.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Petroleum Engineering and Geoengineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh 229304, India.
The optimal design of cement slurry by balancing various cement additives and cement is critical for effective oil well cementation job. However, given adverse circumstances of application, existing additives may not be sufficient to perform suitably in challenging conditions, leading to premature cement hydration, formation of microcracks, and gas channeling pathways. Thus, this study explores the use of a single-step silica nanofluid (NP size: 5-10, 90-100, and 250-300 nm and concentration: 1, 3, and 5 wt %) as an additive and explores its effect on thickening time, fluid loss, and rheological behavior of class G cement slurry at high-pressure and high-temperature (HPHT) conditions (135 °C and 3625 psi).
View Article and Find Full Text PDFHeliyon
November 2024
Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720, Szeged, Hungary.
Catalytic studies aim to design new catalysts to eliminate unwanted by-products and obtain 100 % selectivity for the preferred target product without losing activity. For this purpose, understanding the role of each component building up the catalyst is essential. However, determining the intrinsic catalytic activity of pure metals, especially precious metals in the CO hydrogenation reaction under ambient conditions is complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!