Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, nano-hybrid electrospun non-woven mats made of wool keratin combined with diclofenac loaded hydrotalcites (HTD) were prepared and characterized as potential drug delivery systems and scaffolds for fibroblast cell growth. Nano-hybrid electrospun non-woven mats showed a good adaptability to wet skin, effortlessly conforming to the three-dimensional topography of the tissue. Nanosized HTD exercised an overall reinforcing action on the electrospun non-woven mats since the nanohybrid samples displayed a reduced swelling ratio and a slower degradation profile compared to keratin-based nanofiber non-woven mats containing free diclofenac, without negative effects on drug release. The cell viability test indicated a decreased toxicity of the drug when loaded into nanofibers and confirmed the biocompatibility of keratin/HTD electrospun non-woven mats; moreover, a controlled diclofenac release within the first 24 hours does not compromise the fibroblast cell growth in a significant manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr10114k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!