Luminescent metal-organic frameworks (MOFs) have been explored extensively as potential probes for nitroaromatic molecules, which are common constituents of explosive devices. Guest encapsulation within MOF pores is often cited as the prerequisite for emission changes, but the evidence for this signal transduction mechanism is often inadequate. Using the unique bipyridyl ligand AzoAEpP (2,2'-bis[N,N'-(4-pyridyl)ethyl]diaminoazobenzene), we constructed two luminescent pillared paddle-wheel Zn2+ MOFs using aryl dicarboxylate ligands 1,4-naphthalenedicarboxylic acid (ABMOF-1) and benzene 1,4-dicarboxylic acid (ABMOF-2). While both MOFs exhibit luminescence, 2,4-dinitrophenol only extinguishes ABMOF-1 emission. Since the size of the pores in ABMOF-1 precludes guest inclusion, we used X-ray photoelectron spectroscopy (XPS) to confirm the surface interaction and obtain insight into the nature of the quenching process. XPS experiments utilized a fluorinated nitroaromatic molecule, 4-trifluoromethyl-2,6-dinitrophenol, that extinguishes ABMOF-1 emission, and verified surface adsorption through a series of angle-resolved (ARXPS) and argon-ion sputter depth profile experiments. By further developing these techniques, we hope to develop a general approach for distinguishing between the various intermolecular interactions between MOFs and analytes that lead to changes in luminescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt04404j | DOI Listing |
Inorg Chem
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University, Jinan 250061, P. R. China.
In this work, CaWO (CWO) phosphors were successfully synthesized using a high-temperature solid-state method, exhibiting an anomalous far-red/near-infrared (FR-NIR) emission centered at 685 nm. The origin of this FR-NIR emission is confirmed through Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and heterovalent cationic substitution (Y/Na → Ca). These analyses indicate that interstitial oxygen (O) defects within the lattice are primarily responsible for the FR-NIR emission.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
With the growing severity of air pollution, monitoring harmful gases that pose risks to both human health and the ecological environment has become a focal point of research. Titanium dioxide (TiO) demonstrates significant potential for application in SO gas detection. However, the performance of pure TiO is limited.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, China.
Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, P.R. China.
Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!