Polyhydroxyalkanoate production using waste vegetable oil and filtered digestate liquor of chicken manure.

Prep Biochem Biotechnol

a Department of Material Engineering , Adıyaman University, Adiyaman , Turkey.

Published: June 2019

The production of polyhydroxyalkanoates (PHA) using digestate of chicken manure combined with waste sunflower oil as no-cost feedstocks in a multi-stage process was investigated. Using H16 in combined culture media, a maximum PHA accumulation of 4.6 ± 0.2 g/L at 75.1 ± 1.4% of cell dry matter and a residual cell matter yield of 1.5 ± 0.1 g/L were obtained after 96 hr of cultivation (30 °C, 160 rpm, pH 7.0) in flask-based experiments. Manure was acidogenically fermented in a continuous stirring tank reactor in fed-batch mode. The bioreactor was operated at varying organic loading rates (OLR) and hydraulic retention times (HRT) ranging from 1-4 g volatile solids (VS)/L/d and 4-8 days, respectively. Optimal operation was observed at an OLR of 4 g VS/L/d and an HRT of 4 days. Analysis showed the presence of significant amounts of ammonia, potassium, magnesium, calcium, and trace elements, i.e. Fe, Cu, Ni, Mn, Co, Zn, Cr in the digestate. The micro-filtered digestate was utilized as a complex culture media base while waste oil served as an additional carbon source and supplemented for effective PHA production. The total volatile fatty acid content of digestate greatly affected the growth performance of the PHA-producing microorganism H16.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2019.1587626DOI Listing

Publication Analysis

Top Keywords

chicken manure
8
culture media
8
digestate
5
polyhydroxyalkanoate production
4
production waste
4
waste vegetable
4
vegetable oil
4
oil filtered
4
filtered digestate
4
digestate liquor
4

Similar Publications

Total-solids-controlled microbial response and volatile fatty acids production in sludge and chicken manure co-fermentation.

J Environ Manage

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.

With the aim of exploring the association between microbial response and volatile fatty acids (VFAs) production in sludge and chicken manure co-fermentation with total solids (TS) controlled, four fermentation experimental groups (TS = 20, 40, 60, and 80 g/L) were established in this study. The results demonstrated that the yield of VFAs reached the peak (530.08 mg COD/g VSS) at the 40 g-TS group.

View Article and Find Full Text PDF

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Optimized hydrothermal carbonization of chicken manure and anaerobic digestion of its process water for better energy management.

J Environ Manage

January 2025

Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.

Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) data from agroecosystems in low- and middle-income countries is limited. We surveyed chicken (n = 52) and pig (n = 47) farms in Kenya to understand AMR in animal-environment pathways. Using LC-MS/MS, we validated the methods for analyzing eight common antibiotics and quantified the associated risks.

View Article and Find Full Text PDF

Enhancing indigenous plant growth in metal(loid) contaminated soil using biochar.

Chemosphere

January 2025

Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea. Electronic address:

Soil around mines contaminated with metal(loid) is not suitable for growing plants and it is necessary to select indigenous plants with tolerance for metal(loid) and ameliorate metal toxicity in soil using soil amendments. Therefore, the purpose of this study was to improve the soil environment to make it suitable for plant growth by treating chicken manure derived-biochar in soil contaminated with arsenic (As), cadmium (Cd), and lead (Pb). Biochar application increased soil pH and significantly reduced bioavailable As, Cd and Pb, thereby lowering toxicity in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!