Poly(amidoamine) Dendrimer as a Respiratory Nanocarrier: Insights from Experiments and Molecular Dynamics Simulations.

Langmuir

State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering , Southeast University, Nanjing 210096 , China.

Published: April 2019

Pulmonary drug delivery is superior to the systemic administration in treating lung diseases. An optimal respiratory nanocarrier should be able to efficiently and safely cross the pulmonary surfactant film, which serves as the first biological barrier for respiratory delivery and plays paramount roles in maintaining the proper mechanics of breathing. In this work, we focused on the interactions between poly(amidoamine) (PAMAM) dendrimers and a model pulmonary surfactant. With combined Langmuir monolayer experiments and coarse-grained molecular dynamics simulations, we studied the effect of environmental temperature, size, and surface property of PAMAM dendrimers (G3-OH, G3-NH, G5-OH, and G5-NH) on the dipalmitoylphosphatidylcholine (DPPC) monolayer. Our simulations indicated that the environmental temperature could significantly affect the influence of PAMAM dendrimers on the DPPC monolayer. Therefore, results obtained at room temperature cannot be directly applied to elucidate interactions at body temperature. Simulations at body temperature found that all tested PAMAM dendrimers can easily penetrate the lipid monolayer during the monolayer expansion process (mimicking "inhalation"), and the cationic PAMAM dendrimers (-NH) show promising penetration ability during the monolayer compression process (mimicking "expiration"). Larger PAMAM dendrimers (G5) adsorbed onto the lipid monolayer tend to induce structural collapse and inhibit normal phase transitions of the lipid monolayer. These adverse effects could be mitigated in the subsequent expansion-compression cycle. These findings suggest that the PAMAM dendrimer may be used as a potential respiratory drug nanocarrier.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00434DOI Listing

Publication Analysis

Top Keywords

pamam dendrimers
24
lipid monolayer
12
respiratory nanocarrier
8
molecular dynamics
8
dynamics simulations
8
pulmonary surfactant
8
monolayer
8
environmental temperature
8
dppc monolayer
8
body temperature
8

Similar Publications

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Polymer Gels Based on PAMAM Dendrimers Functionalized with Caffeic Acid for Wound-Healing Applications.

Gels

January 2025

Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.

The wound-healing process has usually been related to therapeutic agents with antioxidant properties. Among them, caffeic acid, a cinnamic acid derivative, stands out. However, the use of this natural product is affected by its bioavailability and half-life.

View Article and Find Full Text PDF

Deuterium (H) MRI is an emerging tool for noninvasive imaging. We explore the integration of H MRI with deuterated multifunctional nanopolymers for deuterated particle imaging (DPI). To this end, amine-terminated G5-polyamidoamine (PAMAM) dendrimers were labeled with deuterated acetyl surface groups, leading to highly H-loaded bioparticles, making them ideal for imaging studies.

View Article and Find Full Text PDF

Introduction: Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties.

View Article and Find Full Text PDF

Extracellular Matrix-Inspired Dendrimer Nanogels Encapsulating Cyclophosphamide for Systemic Sclerosis Treatment.

ACS Nano

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Cyclophosphamide has a certain therapeutic effect on treating systemic sclerosis (SSc), while difficulties exist in controlling severe systematic side effects and enhancing targeting capacity. Here, inspired from the natural extracellular matrix composition, we propose a cyclophosphamide-encapsulated nanogel based on dendritic polymers polyamidoamine (PAMAM) for SSc treatment. We combine bovine serum albumin and generation 5 (G5) PAMAM dendrimers with polyphenol modification to obtain nanogels featured with antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!