[Segmentation of retinal image vessels based on fully convolutional network with depthwise separable convolution and channel weighting].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

Tianjin Polytechnic University, School of Electronics and Information Engineering, Tianjin 300387, P.R.China;Tianjin Key Laboratory of Optoelectronic Detection and Systems, Tianjin 300387, P.R.China.

Published: February 2019

Diseases such as diabetes and hypertension can lead to change the shape of the retinal blood vessels. Segmentation of fundus images is a key step in the process of quantitative analysis of the disease, which is instructive in the analysis and diagnosis of clinical diseases. In this paper, a method for the segmentation of retinal image vessels based on fully convolutional network (FCN) with depthwise separable convolution and channel weighting is presented. Firstly, CLAHE and Gamma correction of the green channel of the fundus image are used to enhance the contrast. Then, in order to adapt to network training, the enhanced image is divided into patches to expand the data. Finally, the depthwise separable convolution instead of the standard convolution method is used to increase the network width. Meanwhile, the channel weighting module is introduced to explicitly model the relationship between the characteristic channels in order to improve the distinguishability of the features. The combination of them is applied to the FCN and the results of expert manual identification are used to supervise the experiment on the DRIVE database. The results show that the segmentation accuracy of the proposed method in DRIVE database reached 0.963 0 and AUC reached 0.983 1. The segmentation accuracy in STARE database reached 0.962 0 and AUC achieved 0.983 0. To some extent, the proposed method has better feature resolution and better segmentation performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929885PMC
http://dx.doi.org/10.7507/1001-5515.201801054DOI Listing

Publication Analysis

Top Keywords

depthwise separable
12
separable convolution
12
retinal image
8
image vessels
8
vessels based
8
based fully
8
fully convolutional
8
convolutional network
8
convolution channel
8
channel weighting
8

Similar Publications

Reducing damage and missed harvest rates is essential for improving efficiency in unmanned cabbage harvesting. Accurate real-time segmentation of cabbage heads can significantly alleviate these issues and enhance overall harvesting performance. However, the complexity of the growing environment and the morphological variability of field-grown cabbage present major challenges to achieving precise segmentation.

View Article and Find Full Text PDF

Cascaded Feature Fusion Grasping Network for Real-Time Robotic Systems.

Sensors (Basel)

December 2024

College of Engineering, Huaqiao University, Quanzhou 362021, China.

Grasping objects of irregular shapes and various sizes remains a key challenge in the field of robotic grasping. This paper proposes a novel RGB-D data-based grasping pose prediction network, termed Cascaded Feature Fusion Grasping Network (CFFGN), designed for high-efficiency, lightweight, and rapid grasping pose estimation. The network employs innovative structural designs, including depth-wise separable convolutions to reduce parameters and enhance computational efficiency; convolutional block attention modules to augment the model's ability to focus on key features; multi-scale dilated convolution to expand the receptive field and capture multi-scale information; and bidirectional feature pyramid modules to achieve effective fusion and information flow of features at different levels.

View Article and Find Full Text PDF

MPIC: Exploring alternative approach to standard convolution in deep neural networks.

Neural Netw

December 2024

Institute of Automation, Chinese Academy of Sciences, MAIS, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 101408, China.

In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).

View Article and Find Full Text PDF

In modern agriculture, the proliferation of weeds in cotton fields poses a significant threat to the healthy growth and yield of crops. Therefore, efficient detection and control of cotton field weeds are of paramount importance. In recent years, deep learning models have shown great potential in the detection of cotton field weeds, achieving high-precision weed recognition.

View Article and Find Full Text PDF

Cutting tools with orderly arranged diamond grits using additive manufacturing show better sharpness and longer service life than traditional diamond tools. A retractable needle jig with vacuum negative pressure was used to absorb and place grits in an orderly arranged manner. However, needle hole wear after a long service time could not promise complete grit adsorption forever.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!