Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion.

Ecol Lett

Institut de Biologie de l'ENS, CNRS UMR 8197, INSERM U 1043, Ecole Normale Supérieure, Paris Sciences & Lettres University, Paris, F-75005, France.

Published: May 2019

Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single-species population model along a one-dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco-evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave-like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco-evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco-evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13234DOI Listing

Publication Analysis

Top Keywords

local adaptation
12
adaptation dispersal
8
dispersal evolution
8
spatial eco-evolutionary
8
eco-evolutionary dynamics
8
eco-evolutionary feedbacks
8
dispersal
5
invasion
5
local
4
evolution spatial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!