A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. | LitMetric

Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer.

Ann Surg Oncol

Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.

Published: June 2019

Objective: The aim of this study was to investigate whether pretherapeutic, multiparametric magnetic resonance imaging (MRI) radiomic features can be used for predicting non-response to neoadjuvant therapy in patients with locally advanced rectal cancer (LARC).

Methods: We retrospectively enrolled 425 patients with LARC [allocated in a 3:1 ratio to a primary (n = 318) or validation (n = 107) cohort] who received neoadjuvant therapy before surgery. All patients underwent T1-weighted, T2-weighted, diffusion-weighted, and contrast-enhanced T1-weighted MRI scans before receiving neoadjuvant therapy. We extracted 2424 radiomic features from the pretherapeutic, multiparametric MR images of each patient. The Wilcoxon rank-sum test, Spearman correlation analysis, and least absolute shrinkage and selection operator regression were successively performed for feature selection, whereupon a multiparametric MRI-based radiomic model was established by means of multivariate logistic regression analysis. This feature selection and multivariate logistic regression analysis was also performed on all single-modality MRI data to establish four single-modality radiomic models. The performance of the five radiomic models was evaluated by receiver operating characteristic (ROC) curve analysis in both cohorts.

Results: The multiparametric, MRI-based radiomic model based on 16 features showed good predictive performance in both the primary (p < 0.01) and validation (p < 0.05) cohorts, and performed better than all single-modality models. The area under the ROC curve of this multiparametric MRI-based radiomic model achieved a score of 0.822 (95% CI 0.752-0.891).

Conclusions: We demonstrated that pretherapeutic, multiparametric MRI radiomic features have potential in predicting non-response to neoadjuvant therapy in patients with LARC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510882PMC
http://dx.doi.org/10.1245/s10434-019-07300-3DOI Listing

Publication Analysis

Top Keywords

neoadjuvant therapy
16
non-response neoadjuvant
8
locally advanced
8
advanced rectal
8
rectal cancer
8
pretherapeutic multiparametric
8
radiomic features
8
feature selection
8
multiparametric mri-based
8
mri-based radiomic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!