Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte.

J Assist Reprod Genet

Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo, 18618-970, Brazil.

Published: May 2019

AI Article Synopsis

  • Researchers studied how FGF2 expression in cumulus cells is regulated by FSH and substances from oocytes during in vitro maturation (IVM) in bovine models.
  • The study found that FGF2, when added to IVM, sped up meiotic progress, made it harder to dissociate cumulus cells, and reduced cell death among those cells.
  • This research highlights the role of oocytes in regulating FGF2 expression and suggests that FGF2 may enhance the survival and quality of cumulus cells during the maturation process.

Article Abstract

Purpose: We first assessed regulation of FGF2 expression in cumulus cells by FSH and oocyte-secreted factors during in vitro maturation (IVM). Then, we tested the hypothesis that FGF2 regulates meiotic progression, cumulus expansion, and apoptosis in cumulus-oocyte complexes (COC) undergoing IVM.

Methods: In vitro maturation of bovine COC was utilized as a model to assess regulation of FGF2 expression by FSH and oocyte-secreted factors (via microsurgical removal of the oocyte), as well as effects of graded doses of FGF2 on meiotic progression, degree of cumulus expansion, dissociation of cumulus cells, and cumulus cells apoptosis. Expression of genes regulating functional endpoints altered by FGF2 treatment was assessed in cumulus cells by real-time PCR. Cultures were replicated 4-5 times and effects of treatments were tested by ANOVA.

Results: FGF2 mRNA expression was increased by FSH and oocyte-secreted factors during IVM. Addition of FGF2 to the IVM medium advanced meiosis resumption, decreased the ease with which cumulus cells were dissociated, and inhibited cumulus cells apoptosis. Decreased cumulus dissociation was accompanied by decreased expression of TNFAIP6.

Conclusions: This is the first study showing that FGF2 expression is regulated by the oocyte in cumulus cells. Moreover, we report novel effects of FGF2 on cumulus cell survival and extracellular matrix (ECM) quality during IVM that may favor acquisition of developmental competence and suggest physiological roles during the final steps of COC differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541720PMC
http://dx.doi.org/10.1007/s10815-019-01436-7DOI Listing

Publication Analysis

Top Keywords

cumulus cells
28
cumulus
12
fgf2 expression
12
fsh oocyte-secreted
12
oocyte-secreted factors
12
fgf2
9
regulation fgf2
8
vitro maturation
8
meiotic progression
8
cumulus expansion
8

Similar Publications

Impact of cholesterol supplementation on Pantaneiro bovine semen cryopreservation: Insights into in vitro embryo production.

Theriogenology

December 2024

Universidade Federal de Mato Grosso (UFMT) campus Cuiabá, Avenida Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, 78060-900, Brazil; Programa de Pós-Graduação Stricto Sensu em Biociência Animal, Universidade de Cuiabá (UNIC), Avenida Manoel José de Arruda, 3100, Jardim Europa, Cuiabá, 78065-900, Brazil. Electronic address:

This study aimed to evaluate the impact of cholesterol supplementation at various concentrations in cryopreserved Pantaneiro bovine semen on in vitro embryo production (IVEP). Grade I and II cumulus-oocyte complexes (COCs) were collected from ovaries retrieved from a commercial slaughterhouse and matured in vitro for 24 h. The matured COCs were divided into four groups based on the concentration of cholesterol -loaded cyclodextrin (CLC) during semen cryopreservation from a Pantaneiro breed bull: Control (C) - 0 mg/mL CLC, T1 - 0.

View Article and Find Full Text PDF

One of the major age-related declines in female reproductive function is the reduced quantity and quality of oocytes. Here we demonstrate that structural changes in the zona pellucida (ZP) were associated with decreased fertilization rates from 34- to 38-week-old female mice, equivalent to the mid-reproductive of human females. In middle-aged mouse ovaries, the decline in the number of transzonal projections was accompanied by a decrease in cumulus cell-oocyte interactions, resulting in a deterioration of the oocyte quality.

View Article and Find Full Text PDF

Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.

View Article and Find Full Text PDF

Premature ovarian insufficiency (POI) has recently been reported to be linked with epigenetic changes. Previous studies have focused on the regulation of individual genes associated with ovarian function through single-gene epigenetic variations; however, there is a deficiency in the comprehensive comprehension of the epigenetic profile for POI. Therefore, we conducted a multi-omics study integrating methylation, hydroxymethylation and transcriptome sequencing analyses in cumulus cells from women with POI and their matched controls.

View Article and Find Full Text PDF

The GPER is an important factor through which somatic cells regulate oocyte maternal mRNA translation and developmental competence.

Int J Biol Macromol

December 2024

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China. Electronic address:

The G protein-coupled estrogen receptor (GPER) plays a crucial role in various biological processes, but its regulation of oocyte meiosis remains unclear. In this study, we generated a Gper1 knockout in growing oocytes using Zp3-Cre, revealing that GPER is essential for oocyte maturation and embryo development. RNA-seq analysis indicated that GPER deficiency significantly altered the oocyte transcriptome and disrupted mRNA translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!