During skin sonoporation and sonophoresis, time-consuming duty cycles or fluid replacement is often required to mitigate coupling fluid temperature increases. This study demonstrates an alternative method for temperature regulation: a circulating, thermoelectric system. Porcine skin samples were sonoporated continuously for 10 min at one of three intensities (23.8, 34.2, 39.4 W/m). A caffeine solution was then applied to the skin and left to diffuse for 20 h. During sonoporation, the system was able to maintain the temperature between 10 and 16°C regardless of the intensity. No increase in transdermal transport was achieved with an intensity of 23.8 W/m. Intensities of 34.2 and 39.4 W/m resulted in 3.5-fold (p < 0.05) and 3.7-fold (p < 0.05) increases in mean transport, relative to a control case with no ultrasound. From these results, it is concluded that a significant transport increase can be achieved with a system that circulates and cools the coupling fluid during ultrasound application. Relative to the previous methods of temperature control (duty cycles and fluid replacement), use of this circulation system will lead to significant time savings in future experimental studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-019-1357-4 | DOI Listing |
Cell Mol Gastroenterol Hepatol
December 2024
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, USA; - Jesse Brown VA Medical Center, Chicago, IL, USA. Electronic address:
Diarrhea associated with enteric infections, gut inflammation, and genetic defects poses a major health burden and results in significant morbidity and mortality. Impaired fluid and electrolyte absorption and/or secretion in the intestine are the hallmark of diarrhea. Electroneutral NaCl absorption in the mammalian GI tract involves the coupling of Na/H and Cl/HCO exchangers.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Neurology, University Hospital Ulm, Ulm, Germany.
Introduction: Very rarely, adult NMDAR antibody-associated encephalitis (NMDAR-E) leads to persistent cerebellar atrophy and ataxia. Transient cerebellar ataxia is common in pediatric NMDAR-E. Immune-mediated cerebellar ataxia may be associated with myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP-4), kelch-like family member 11 (KLHL11), and glutamate kainate receptor subunit 2 (GluK2) antibodies, all of which may co-occur in NMDAR-E.
View Article and Find Full Text PDFBiomicrofluidics
December 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Bio-microfluidic technologies offer promising applications in diagnostics and therapy, yet they face significant technical challenges, particularly in the need for external power sources, which limits their practicality and user-friendliness. Recent advancements have explored innovative methods utilizing body fluids, motion, and heat to power these devices, addressing the power supply issue effectively. Among these, body-motion and body-heat-powered systems stand out for their potential to create self-sustaining, wearable, and implantable devices.
View Article and Find Full Text PDFFundam Res
November 2024
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Electronic packaging is an essential branch of electronic engineering that aims to protect electronic, microelectronic, and nanoelectronic systems from environmental conditions. The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena, such as thermal transport, electromagnetic fields, and mechanical stress. This review presents a comprehensive overview of the multiphysics coupling of electric, magnetic, thermal, mechanical, and fluid fields, which are crucial for assessing the performance and reliability of electronic devices.
View Article and Find Full Text PDFDent Mater
December 2024
University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil. Electronic address:
Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.
Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!