A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of patient's response to OnabotulinumtoxinA treatment for migraine. | LitMetric

Migraine affects the daily life of millions of people around the world. The most well-known disabling symptom associated with this illness is the intense headache. Nowadays, there are treatments that can diminish the level of pain. OnabotulinumtoxinA (BoNT-A) has become a very popular medication for treating migraine headaches in those cases in which other medication is not working, typically in chronic migraines. Currently, the positive response to Botox treatment is not clearly understood, yet understanding the mechanisms that determine the effectiveness of the treatment could help with the development of more effective treatments. To solve this problem, this paper sets up a realistic scenario of electronic medical records of migraineurs under BoNT-A treatment where some clinical features from real patients are labeled by doctors. Medical registers have been preprocessed. A label encoding method based on simulated annealing has been proposed. Two methodologies for predicting the results of the first and the second infiltration of the BoNT-A based treatment are contempled. Firstly, a strategy based on the medical HIT6 metric is described, which achieves an accuracy over 91%. Secondly, when this value is not available, several classifiers and clustering methods have been performed in order to predict the reduction and adverse effects, obtaining an accuracy of 85%. Some clinical features as Greater occipital nerves (GON), chronic migraine time evolution and others have been detected as relevant features when examining the prediction models. The GON and the retroocular component have also been described as important features according to doctors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401533PMC
http://dx.doi.org/10.1016/j.heliyon.2018.e01043DOI Listing

Publication Analysis

Top Keywords

clinical features
8
treatment
5
prediction patient's
4
patient's response
4
response onabotulinumtoxina
4
onabotulinumtoxina treatment
4
migraine
4
treatment migraine
4
migraine migraine
4
migraine daily
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!