The neural basis of meta-volition.

Commun Biol

Department of Clinical Neurology, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.

Published: April 2020

Volition is the power to act beyond simple, automatic responses. We can act voluntarily because we can choose to act otherwise than immediate, external circumstances dictate. But we can also choose to allow ourselves to be led automatically by events around us. The neural basis of this higher power to suspend volition- which we term meta-volition-is unknown. Here we show that inter-individual differences in meta-volition are reflected in extensive, highly lateralised differences in right frontal white matter as indexed by diffusion tensor imaging. Paradoxically, participants with enhanced white matter optimality in these regions are less able to exercise meta-volition, finding it harder to suspend volition. This suggests volition is dependent less on any hierarchical system of meta-volitional control than on the extent to which an extensive network subserving higher volitional powers is competitively dominant over others. A fundamentally parallel neural organisation of human voluntary action at the highest level is thereby implied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418118PMC
http://dx.doi.org/10.1038/s42003-019-0346-1DOI Listing

Publication Analysis

Top Keywords

neural basis
8
white matter
8
basis meta-volition
4
meta-volition volition
4
volition power
4
power simple
4
simple automatic
4
automatic responses
4
responses voluntarily
4
voluntarily choose
4

Similar Publications

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Background: Although childhood maltreatment (CM) is widely recognized as a transdiagnostic risk factor for various internalizing and externalizing psychological disorders, the neural basis underlying this association remain unclear. The potential reasons for the inconsistent findings may be attributed to the involvement of both common and specific neural pathways that mediate the influence of childhood maltreatment on the emergence of psychopathological conditions.

Methods: This study aimed to delineate both the common and distinct neural pathways linking childhood maltreatment to depression and aggression.

View Article and Find Full Text PDF

The manner in which neural activity unfolds over time is thought to be central to sensory, motor and cognitive functions in the brain. Network models have long posited that the brain's computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate.

View Article and Find Full Text PDF

Neocortical somatostatin neuron diversity in cognition and learning.

Trends Neurosci

January 2025

Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!