The combination of chemotherapeutic drugs and reactive oxygen species (ROS) is a promising strategy to achieve improved anticancer effect. Herein, a nanomedicine (LaCIONPs) that can achieve tumor-specific chemotherapeutic drug release and ROS generation is developed for cancer chemo/chemodynamic combination therapy. The LaCIONPs are constructed by encapsulation of iron oxide nanoparticles (IONPs) and β-lapachone (La) in nanostructure assembled by hydrogen peroxide (HO)-responsive polyprodrug and pH-responsive polymer. Through the enhanced permeability and retention effect, the nanosized LaCIONPs can accumulate in tumor tissue. After the LaCIONPs are internalized by tumor cells, the structure of LaCIONPs is disintegrated in acidic intracellular environment, leading to rapid release of La and iron ions. Then the released La generates massive HO through tumor specific catalysis. On the one hand, HO further reacts with iron ions to produce highly toxic hydroxyl radicals for chemodynamic therapy. On the other hand, HO also activates the release of camptothecin from the polyprodrug for chemotherapy. The potent antitumor effect of the LaCIONPs is demonstrated by both in vitro and in vivo results. Therefore, the LaCIONP is a promising nanomedicine for tumor-specific chemo/chemodynamic combination therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402284PMC
http://dx.doi.org/10.1002/advs.201801986DOI Listing

Publication Analysis

Top Keywords

chemo/chemodynamic combination
12
combination therapy
12
drug release
8
reactive oxygen
8
oxygen species
8
cancer chemo/chemodynamic
8
iron ions
8
lacionps
6
tumor-specific drug
4
release
4

Similar Publications

Therapeutic approaches combining various treatments have attracted intensive interests for tumor therapy. Nevertheless, these strategies still face many obstacles, such as overexpressed GSH and hypoxia, owing to the intricate tumor microenvironment (TME). Herein, a versatile nanoplatform, CeO@CuO@DOX-RSL3@HA (CCDRH), was initially constructed for promoting the antitumor efficiency regulation of the TME.

View Article and Find Full Text PDF

EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer.

Small

November 2024

Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China.

The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice.

View Article and Find Full Text PDF

Purpose: The poor delivery and limited penetration of nanoparticles into breast cancer tumors remain essential challenges for effective anticancer therapy. This study aimed to design a promising nanoplatform with efficient tumor targeting and penetration capability for effective breast cancer therapy.

Methods: A pH-sensitive mitoxantrone (MTO) and copper ion-loaded nanosystem functionalized with cyclic CRGDfK and r9 peptide (TPRN-CM) was rationally designed for chemo-chemodynamic combination therapy.

View Article and Find Full Text PDF

ATP-responsive copper(II)-doped ZIF-nanoparticles for synergistic cancer therapy: combining cuproptosis and chemo/chemodynamic therapy.

J Mater Chem B

November 2024

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.

Cancer, a pressing global health challenge, is characterized by its rapid onset and high mortality rates. Conventional treatment methods prove insufficient in achieving the desired therapeutic outcomes, underscoring the critical need to identify an effective and safe approach for cancer treatment. In this study, a copper-doped nanoparticle known as Cu-DOX@ZIF-90 is designed by incorporating copper(II) (Cu(II)) and encapsulating doxorubicin (DOX) within ZIF-90.

View Article and Find Full Text PDF

Biomimetic copper-containing nanogels for imaging-guided tumor chemo-chemodynamic-immunotherapy.

Acta Biomater

November 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China. Electronic address:

Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment and enhance diagnostic and therapeutic outcomes still remains a great challenge. Here, we report the facile construction of a multivariate nanoplatform based on cancer cell membrane (CM)-encapsulated redox-responsive poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) co-loaded with Cu(II) and chemotherapeutic drug toyocamycin (Toy) for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. We show that redox-responsive PVCL NGs formed through precipitation polymerization can be aminated, conjugated with 3,4-dihydroxyhydrocinnamic acid for Cu(II) complexation, physically loaded with Toy, and finally camouflaged with CMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!