Many efforts have been made to develop bifunctional electrocatalysts to facilitate overall water splitting. Here, a fibrous bifunctional 3D electrocatalyst is reported for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with high performance. The remarkable electrochemical performance is attributed of the catalysts to a number of factors: the metallic character of the three components (i.e., NiN, CoN, and NiCoO); the electronic structure, nanoflake-nanosphere network with abundant electroactive sites, and the electric field effect at the interfaces between different components. The oxide-nitride/graphite fibers have the lowest overpotential requirements of 71 and 183 mV at 10 mA cm for HER and OER in alkaline medium, respectively. These values are comparable to those of commercial Pt/C (20 wt%) and RuO. The electrodes also show a response to HER and OER in both neutral and acid media. Furthermore, the 3D structure can be highlighted by all-round electrodes for overall water splitting. The calculations on the changes in electrons transfer and the Femi level from oxides to oxides/nitrides reveal that the observed superb electrocatalytic performance can be attributed to the presence of NiN and CoN derived from the in situ nitridation of NiCoO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402402PMC
http://dx.doi.org/10.1002/advs.201801829DOI Listing

Publication Analysis

Top Keywords

water splitting
12
evolution reaction
8
performance attributed
8
nin con
8
promotion water
4
splitting activity
4
activity wide
4
wide range
4
range interfacial
4
interfacial electrical
4

Similar Publications

Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!