α,ω-Bis(1,8-dichloroanthracen-10-yl)alkanes with (CH) -linker units (=1-4) were synthesized starting from 1,8-dichloroanthracen-10(9)-one. This was transformed into anthracenes with allyl, bromomethyl and propargyl substituents in position 10; these were converted in various C-C-bond formation reactions (plus hydrogenation), leading to two anthracene units flexibly linked by α,ω-alkandiyl groups. 1,2-Ethandiyl- and 1,3-propandiyl-linked derivatives were functionalized with ethynyl groups in positions 1, 8, 1' and 8', and these terminally functionalized by MeSn groups using MeNSnMe. All linked bisanthracenes were subjected to UV light induced cyclomerization and a series of 9,10 : 9',10'-photo-cyclomers were obtained. Their thermal cycloreversion and (repeated) switchability was demonstrated. 1,3-Bis{1,8-bis[(trimethylstannyl)ethynyl]anthracen-10-yl}propane served as model compound for photo-switchable acceptor molecules and its open and closed forms were characterized by NMR and DOSY experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401664PMC
http://dx.doi.org/10.1002/open.201900029DOI Listing

Publication Analysis

Top Keywords

rational approach
4
approach tetra-functional
4
tetra-functional photo-switches
4
photo-switches αω-bis18-dichloroanthracen-10-ylalkanes
4
αω-bis18-dichloroanthracen-10-ylalkanes -linker
4
-linker units
4
units =1-4
4
=1-4 synthesized
4
synthesized starting
4
starting 18-dichloroanthracen-109-one
4

Similar Publications

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.

Mol Pharm

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.

Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.

View Article and Find Full Text PDF

Why does silicon have an indirect band gap?

Mater Horiz

January 2025

Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

It is difficult to intuit how electronic structure features-such as band gap magnitude, location of band extrema, effective masses, -arise from the underlying crystal chemistry of a material. Here we present a strategy to distill sparse and chemically-interpretable tight-binding models from density functional theory calculations, enabling us to interpret how multiple orbital interactions in a 3D crystal conspire to shape the overall band structure. Applying this process to silicon, we show that its indirect gap arises from a competition between first and second nearest-neighbor bonds-where second nearest-neighbor interactions pull the conduction band down from Γ to X in a cosine shape, but the first nearest-neighbor bonds push the band up near X, resulting in the characteristic dip of the silicon conduction band.

View Article and Find Full Text PDF

Background: Promising cancer treatments, such as DDR inhibitors, are often challenged by the heterogeneity of responses in clinical trials. The present work aimed to build a computational framework to address those challenges.

Methods: A semi-mechanistic pharmacokinetic-pharmacodynamic model of tumour growth inhibition was developed to investigate the efficacy of PARP and ATR inhibitors as monotherapies, and in combination.

View Article and Find Full Text PDF

Light-up lipid droplets dynamic behaviors using rationally designed carbon dots.

Talanta

January 2025

Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:

Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!