AI Article Synopsis

Article Abstract

A convenient methodology for the synthesis of mono- and di-halogenated benzo[]thiophenes is described herein, which utilizes copper(II) sulfate pentahydrate and various sodium halides in the presence of substituted 2-alkynylthioanisoles. The proposed method is facile, uses ethanol as a green solvent, and results in uniquely substituted benzo[]thiophene structures with isolated yields up to 96%. The most useful component of this methodology is the selective introduction of bromine atoms at every available position (2-7) around the benzo[]thiophene ring, while keeping position 3 occupied by a specific halogen atom such as Cl, Br or I. Aromatic halogens are useful reactive handles; therefore, the selective introduction of halogens at specific positions would be valuable in the targeted synthesis of bioactive molecules and complex organic materials via metal-catalyzed cross coupling reactions. This work is a novel approach towards the synthesis of dihalo substituted benzo[]thiophene core structures, which provides a superior alternative to the current methods discussed herein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420224PMC
http://dx.doi.org/10.1016/j.tet.2018.04.080DOI Listing

Publication Analysis

Top Keywords

sodium halides
8
substituted benzo[]thiophene
8
selective introduction
8
halides source
4
source electrophilic
4
electrophilic halogens
4
halogens green
4
synthesis
4
green synthesis
4
synthesis 3-halo-
4

Similar Publications

The first successful synthesis of 1,2,3-triazoles using CyreneTM as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules.

View Article and Find Full Text PDF

The synthesis of alkyl halides can be performed by simply halide exchange reactions between two different alkyl halides, catalyzed by aluminosilicates. Here, we show that commercially available alumina shows a superior catalytic activity for the halogen exchange reaction between long alkyl halides (more than 6 carbons), including fluorides, in either batch or flow modes. The catalytic activity of the solid alumina is modulated by alkaline countercations on the surface, and sodium-supported alumina shows the optimal performance for the iodo-bromo and iodo-fluoro exchange under inflow reaction conditions, after >24 h reaction time, without any external additive.

View Article and Find Full Text PDF

Highly Efficient and Stable Perovskite Solar Cells by Introducing a Multifunctional Surface Modulator.

Angew Chem Int Ed Engl

December 2024

Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, P. R. China.

Article Synopsis
  • Researchers present a new strategy using sodium 4,4'-(1,4-phenylenebis(oxy))bis(butane-1-sulfonate) (ZR3) to improve perovskite solar cells (PSCs) by addressing surface defects and ion diffusion issues.* -
  • ZR3 effectively passivates lead-related and halide defects, enhances exciton dissociation, improves energy alignment with the hole transport layer (HTL), and reduces charge recombination.* -
  • This treatment leads to a significant increase in power conversion efficiency (PCE), reaching up to 25.96%, while also enhancing the stability of the solar cells through reduced ion migration and defects.*
View Article and Find Full Text PDF

Bidentate [C,N] and Tridentate [C,N,S] Palladium Cyclometallated Complexes as Pre-Catalysts in Cross-Coupling Reactions.

ChemistryOpen

November 2024

Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-, 15782, Santiago de Compostela, Spain.

Article Synopsis
  • The study focuses on the synthesis of palladacycles (both dinuclear and mononuclear) using halide-substituted Schiff base ligands, which involve C-H activation when treated with palladium(II) compounds.
  • Dinuclear complexes formed through metathesis with sodium chloride are converted into μ-chloride dinuclear complexes, which then react with phosphines to yield various phosphine derivatives.
  • The synthesized compounds were characterized using techniques like microanalysis, spectroscopy, and X-ray diffraction, and their efficacy as pre-catalysts in the Suzuki-Miyaura cross-coupling reaction was evaluated, highlighting the best-performing complexes.
View Article and Find Full Text PDF

Studies on organotellurium compounds have not been extensively conducted due to a lack of tolerable synthetic methods, difficult isolation processes, and their chemical instabilities. Overcoming these hurdles, we developed an efficient and mild method for the selective synthesis of symmetrical diorganyl tellurides , a representative class of organotellurium compounds, using a proper reducing reagent. The reaction condition was optimized for the selective formation of by forming the telluride dianion (Te) using a reducing reagent, sodium borohydride (NaBH), and then followed by the addition of organyl halides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!