The tumour suppressor p53 (encoded by TP53) protects the genome against cellular stress and is frequently mutated in cancer. Mutant p53 acquires gain-of-function oncogenic activities that are dependent on its enhanced stability. However, the mechanisms by which nuclear p53 is stabilized are poorly understood. Here, we demonstrate that the stability of stress-induced wild-type and mutant p53 is regulated by the type I phosphatidylinositol phosphate kinase (PIPKI-α (also known as PIP5K1A)) and its product phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P). Nuclear PIPKI-α binds to p53 upon stress, resulting in the production and association of PtdIns(4,5)P with p53. PtdIns(4,5)P binding promotes the interaction between p53 and the small heat shock proteins HSP27 (also known as HSPB1) and αB-crystallin (also known as HSPB5), which stabilize nuclear p53. Moreover, inhibition of PIPKI-α or PtdIns(4,5)P association results in p53 destabilization. Our results point to a previously unrecognized role of nuclear phosphoinositide signalling in regulating p53 stability and implicate this pathway as a promising therapeutic target in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017954PMC
http://dx.doi.org/10.1038/s41556-019-0297-2DOI Listing

Publication Analysis

Top Keywords

p53
11
nuclear phosphoinositide
8
mutant p53
8
nuclear p53
8
nuclear
5
phosphoinositide kinase
4
kinase complex
4
complex regulates
4
regulates p53
4
p53 tumour
4

Similar Publications

This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.

View Article and Find Full Text PDF

Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).

View Article and Find Full Text PDF

Objective: No biomarkers are available to predict treatment response in patients with endometrial cancers who undergo fertility-sparing treatment. Therefore, we aimed to evaluate the prognostic role of molecular classification.

Methods: Patients with endometrial cancer who underwent fertility-sparing treatment with progestins between 2005 and 2021 were retrospectively identified.

View Article and Find Full Text PDF

Objective: Endometrial cancers can be classified into 4 molecular sub-groups: (1) POLE mutated (POLEmut), (2) mismatch repair deficiency/microsatellite-instable (MMRd/MSI-H), (3) TP53-mutant or p53 abnormal (p53abn), and (4) no specific mutational profile (NSMP). Although molecular classification is increasingly applied in oncology, its role in guiding fertility-sparing treatments for endometrial cancer remains unclear. This study examines the prognostic role of molecular classification in fertility-sparing treatment and its potential to guide treatment decisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!