Spin Torque Efficiency and Analytic Error Rate Estimates of Skyrmion Racetrack Memory.

Sci Rep

Doppler Laboratory, "Advanced Magnetic Sensing and Materials, " University of Vienna, Währinger Straße 17, 1090, Vienna, Austria.

Published: March 2019

In this paper, the thermal stability of skyrmion bubbles and the critical currents to move them over pinning sites were investigated. For the used pinning geometries and the used parameters, the unexpected behavior is reported that the energy barrier to overcome the pinning site is larger than the energy barrier of the annihilation of a skyrmion. The annihilation takes place at boundaries by current driven motion, as well as due to the excitation over energy barriers, in the absence of currents, without forming Bloch points. It is reported that the pinning sites, which are required to allow thermally stable bits, significantly increase the critical current densities to move the bits in skyrmion-like structures to about j = 0.62 TA/m². The simulation shows that the applied spin transfer model predicts experimentally obtained critical currents to move stable skyrmions at room temperature well, which is in contrast to simulations based on spin orbit torque that predict significantly too low critical currents. By calculating the thermal stability, as well as the critical current, we can derive the spin torque efficiency η = ΔE/I = 0.19 kT/μA, which is in a similar range to the simulated spin torque efficiency of MRAM structures. Finally, it is shown that the stochastic depinning process of any racetrack-like device requires an extremely narrow depinning time distribution smaller than ~6% of the current pulse length to reach bit error rates smaller than 10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423329PMC
http://dx.doi.org/10.1038/s41598-019-41062-yDOI Listing

Publication Analysis

Top Keywords

spin torque
12
torque efficiency
12
critical currents
12
thermal stability
8
currents move
8
pinning sites
8
energy barrier
8
critical current
8
spin
5
critical
5

Similar Publications

Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.

View Article and Find Full Text PDF

Thomas precession, relativistic torque, and non-planar orbits.

Eur Phys J C Part Fields

January 2025

Department of Physics, University of Alberta, Edmonton, AB T6G 2E1 Canada.

We analyze the angular momentum balance for a particle undergoing Thomas precession. The relationships among relativistic torque, the center of mass, and the center of inertia for a spinning particle are clarified. We show that spin precession is accompanied by orbital angular momentum precession, and present examples of the resulting out-of-plane motion.

View Article and Find Full Text PDF

Spin-orbit torque (SOT) is widely considered to be a fast and robust writing scheme for magnetic random-access memories (MRAMs). However, the requirements of field-free switching and high switching efficiency are often incompatible in SOT devices, placing a critical challenge on its improvement. Here we propose that by utilizing biaxial systems the dilemma between high-efficiency and external-field-free SOT switching can be solved intrinsically.

View Article and Find Full Text PDF

Background: Elbow injuries are prevalent among professional baseball pitchers as nearly 25% undergo ulnar collateral ligament reconstruction. Pitch type, ball velocity, and spin rate have been previously hypothesized to influence elbow varus torque and subsequent risk of injury, but existing research is inconclusive.

Purpose: To examine elbow varus torque, cumulative torque, and loading rate within professional pitchers throwing fastball, curveball, change-up, and slider pitches, as well as to identify potential influences of ball spin on the elbow.

View Article and Find Full Text PDF

High spin-orbit torque efficiency induced by engineering spin absorption for fully electric-driven magnetization switching.

Mater Horiz

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.

Realizing spin-orbit torque (SOT)-driven magnetization switching offers promising opportunities for the advancement of next-generation spintronics. However, the relatively low charge-spin conversion efficiency accompanied by an ultrahigh critical switching current density () remains a significant obstacle to the further development of SOT-based storage elements. Herein, spin absorption engineering at the ferromagnet/nonmagnet interface is firstly proposed to achieve high SOT efficiency in Pt/Co/Ir trilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!