A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway. | LitMetric

Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway.

J Biotechnol

Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, 410073, China.

Published: April 2019

Synthetic scaffold systems, which exhibit enzyme clustering effect, have been considered as an important parallel approach for metabolic flux control and pathway enhancement. Here, we described an improved DNA-based scaffold system for synthetic tri-enzymatic pathway in Escherichia coli. With plasmid DNA serving as scaffold and exogenous enzymes fused with rationally designed transcription activator-like effectors (TALEs), our approach successfully clustered three TALE-fused enzymes and significantly increased the production of a mevalonate-producing tri-enzymatic pathway with the optimized scaffold structure and plasmid copy number. These results further suggested the scalability and robustness of the TALE-based scaffold system, and we can assume that it can be used on numerous multi-enzyme metabolic pathways due to its programmable features.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2019.03.008DOI Listing

Publication Analysis

Top Keywords

scaffold system
8
tri-enzymatic pathway
8
scaffold
6
assembly tale-based
4
tale-based dna
4
dna scaffold
4
scaffold enhancement
4
enhancement exogenous
4
exogenous multi-enzymatic
4
pathway
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!