Dopamine and glutamate transporters (DAT and GLT-1, respectively) share some biophysical characteristics, as both are secondary active carriers coupled to electrochemical ion gradients. In order to identify common or specific components of their respective proteomes, we performed a proximity labelling assay (BioID) in the hippocampal cell line HT22. While most of the identified proteins were specific for each transporter (and will be analyzed elsewhere), we detected two membrane proteins in the shared interactome of GLT-1 and DAT: the transmembrane protein 263 (Tmem263) and the potassium channel protein Kv7.3. However, only Kv7.3 formed immunoprecipitable complexes with GLT-1 and DAT in lysates of transfected HEK293 cells. Moreover, either DAT or GLT-1 co-clustered with Kv7.2/7.3 along the axonal tracts in co-transfected primary neurons, indicating a close spatial proximity between these proteins. Kv7.3, forming heterotetramers with the closely related subunit Kv7.2, underlies the M-currents that control the resting membrane potential and spiking activity in neurons. To investigate whether the presence of the potassium channel affected DAT or GLT-1 function, we performed uptake determinations using radioactive substrate and electrophysiological measurements. Uptake through both transporters was mildly stimulated by the presence of the channel, an effect that was reversed by the potassium channel blocker XE-991. Electrophysiological recording (in transfected HT22 and differentiated SH-SY5Y cells) indicated that the depolarizing effect induced by the presence of the neurotransmitter was reverted by the activity of the potassium channel. Altogether, these data suggest a tight spatial and functional relationship between the DAT/GLT-1 transporters and the Kv7.2/7.3 potassium channel that immediately readjusts the membrane potential of the neuron, probably to limit the neurotransmitter-mediated neuronal depolarization. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2019.03.011 | DOI Listing |
Toxicology
December 2024
Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) have been regarded as important environmental carcinogens that can cause lung cancer. However, the underlying epigenetic mechanism during PAHs-induced lung carcinogenesis has remained largely unknown. Previously, we screened some novel epigenetic regulatory genes during 3-methylcholanthrene (3-MCA)-induced lung carcinogenesis, including the potassium inwardly rectifying channel subfamily J member 15 (KCNJ15) gene.
View Article and Find Full Text PDFFitoterapia
December 2024
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco. Electronic address:
Ethnopharmacological Relevance: Hypertension is a serious health problems and a leading cause of adult mortality worldwide. Foeniculum. vulgare Mill, a plant traditionally used for various ailments, including cardiovascular disorders such as hypertension.
View Article and Find Full Text PDFShenxian-Shengmai (SXSM) is a Chinese patent medicine used in the treatment of sick sinus syndrome (SSS). However, its active chemical compounds and the underlying molecular mechanisms remain unclear. In this study, we researched the underlying mechanisms of SXSM in treating SSS.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China.
The potassium channel Kv1.3 plays an important role in regulating immune cell functions in many inflammatory diseases whereas rarely in osteoarthritis (OA). Here, it is demonstrated that the Kv1.
View Article and Find Full Text PDFiScience
December 2024
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!