Purpose: The goal of this data challenge was to create a structured dynamic with the following objectives: (1) teach radiologists the new rules of General Data Protection Regulation (GDPR), while building a large multicentric prospective database of ultrasound, computed tomography (CT) and MRI patient images; (2) build a network including radiologists, researchers, start-ups, large companies, and students from engineering schools, and; (3) provide all French stakeholders working together during 5 data challenges with a secured framework, offering a realistic picture of the benefits and concerns in October 2018.
Materials And Methods: Relevant clinical questions were chosen by the Société Francaise de Radiologie. The challenge was designed to respect all French ethical and data protection constraints. Multidisciplinary teams with at least one radiologist, one engineering student, and a company and/or research lab were gathered using different networks, and clinical databases were created accordingly.
Results: Five challenges were launched: detection of meniscal tears on MRI, segmentation of renal cortex on CT, detection and characterization of liver lesions on ultrasound, detection of breast lesions on MRI, and characterization of thyroid cartilage lesions on CT. A total of 5,170 images within 4 months were provided for the challenge by 46 radiology services. Twenty-six multidisciplinary teams with 181 contestants worked for one month on the challenges. Three challenges, meniscal tears, renal cortex, and liver lesions, resulted in an accuracy>90%. The fourth challenge (breast) reached 82% and the lastone (thyroid) 70%.
Conclusion: Theses five challenges were able to gather a large community of radiologists, engineers, researchers, and companies in a very short period of time. The accurate results of three of the five modalities suggest that artificial intelligence is a promising tool in these radiology modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diii.2019.02.001 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFIntern Emerg Med
January 2025
Emergency Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Avenida Vasco de Quiróga No. 15, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, CP 14080, Mexico City, Mexico.
The COVID-19 pandemic provided an ideal scenario for studying the care of the elderly population, we implemented a tool named the Geriatric Measure (GM) tool to determine the severity and need for hospitalization. The objective of the study is to evaluate if the results of a brief Geriatric Measure tool are associated with mortality and other outcomes among older adults with COVID-19 treated in the emergency department. Retrospective observational cohort study.
View Article and Find Full Text PDFSci Rep
January 2025
Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.
Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, China.
Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!