The coated direct inlet probe (CDIP) is a new laboratory-made low-cost technology developed from a direct inlet probe (DIP), which has the advantage of quick enrichment/cleanup of an analyte from liquid samples. A capillary probe is coated with hydroxy-terminated polydimethylsiloxane (OH-PDMS), divinylbenzene (DVB), and β-cyclodextrin (β-CD) by a sol-gel method. This probe can be directly coupled with a commercialized atmospheric-pressure chemical ionization (APCI) ion source and high-resolution mass spectrometry, which are widely applicable, reliable, and durable. The ability to perform quantitative analyses with the use of a stable-isotope-labeled internal standard (SIL-IS) was tested by using different concentrations of acenaphthylene (ACY), acenaphthene (ACP), fluorene (FLR), fluoranthene (FLT), phenanthrene (PHE), and benzo[a]pyrene (B[a]P). Calibration curves with a coefficient of determination of R ≥ 0.9982 for different polycyclic aromatic hydrocarbons (PAHs) were obtained. A limit of detection (LOD) of 0.008-0.04 ng mL for PAHs was determined. The entire workflow is solvent-free and can be completed in less than 5 min, which demonstrates the advantages of this technique for quantitative analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2019.03.001 | DOI Listing |
Heliyon
January 2025
CCRI Tongan (Beijing) Intelligent Control Technology Co., Ltd, Beijing, 100013, China.
In order to solve the engineering problem of a large amount of wind leakage in the 8106 comprehensive mining working face of the Carboniferous System under the influence of overlapping mining of two coal seams in Yongdingzhuang Mine, Datong Mining Area, this paper utilizes finite element numerical simulation software to study the wind leakage characteristics of the 8106 working face and the distribution range of the spontaneous combustion "three zones" of the mining area. The results show that, under the condition of external air leakage, the internal pressure of the goaf is greater than the external pressure, the upper pressure is greater than the lower pressure, and the seepage direction is from the top down and from the inside out. Under the condition of no external air leakage, the air leakage source is mainly concentrated in the air inlet lane.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. Electronic address:
Background: Ambient ionization mass spectrometry (MS) has attracted significant attention due to its simplicity and ease of operation. Contactless, or field-induced, ionization is one of the ambient ionization techniques. In this approach, no direct electrical contact or additional voltage is required on the ionization-assisted substrate.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
CNRS, LaMCoS, UMR5259, INSA Lyon, 69621, Villeurbanne, France.
J Am Soc Mass Spectrom
January 2025
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.
View Article and Find Full Text PDFJ Aerosol Sci
November 2024
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, 45226, United States.
Trace measurement of aerosol chemical composition in workplace atmospheres requires the development of high-throughput aerosol collectors that are compact, hand-portable, and can be operated using personal pumps. We describe the design and characterization of a compact, high flow, Turbulent-mixing Condensation Aerosol-in-Liquid Concentrator (TCALC) that allows direct collection of aerosols as liquid suspensions, for off-line chemical, biological, or microscopy analysis. The TCALC unit, measuring approximately 12 × 16 × 18 cm, operates at an aerosol sample flowrate of up to 10 L min, using rapid mixing of a hot flow saturated with water vapor and a cold aerosol sample flow, thereby promoting condensational growth of aerosol particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!