Coated direct inlet probe coupled with atmospheric-pressure chemical ionization and high-resolution mass spectrometry for fast quantitation of target analytes.

J Chromatogr A

National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.

Published: July 2019

The coated direct inlet probe (CDIP) is a new laboratory-made low-cost technology developed from a direct inlet probe (DIP), which has the advantage of quick enrichment/cleanup of an analyte from liquid samples. A capillary probe is coated with hydroxy-terminated polydimethylsiloxane (OH-PDMS), divinylbenzene (DVB), and β-cyclodextrin (β-CD) by a sol-gel method. This probe can be directly coupled with a commercialized atmospheric-pressure chemical ionization (APCI) ion source and high-resolution mass spectrometry, which are widely applicable, reliable, and durable. The ability to perform quantitative analyses with the use of a stable-isotope-labeled internal standard (SIL-IS) was tested by using different concentrations of acenaphthylene (ACY), acenaphthene (ACP), fluorene (FLR), fluoranthene (FLT), phenanthrene (PHE), and benzo[a]pyrene (B[a]P). Calibration curves with a coefficient of determination of R ≥ 0.9982 for different polycyclic aromatic hydrocarbons (PAHs) were obtained. A limit of detection (LOD) of 0.008-0.04 ng mL for PAHs was determined. The entire workflow is solvent-free and can be completed in less than 5 min, which demonstrates the advantages of this technique for quantitative analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.03.001DOI Listing

Publication Analysis

Top Keywords

direct inlet
12
inlet probe
12
coated direct
8
atmospheric-pressure chemical
8
chemical ionization
8
high-resolution mass
8
mass spectrometry
8
probe
5
probe coupled
4
coupled atmospheric-pressure
4

Similar Publications

Study on the law of air leakage in goaf under the influence of double-series coal seam mining.

Heliyon

January 2025

CCRI Tongan (Beijing) Intelligent Control Technology Co., Ltd, Beijing, 100013, China.

In order to solve the engineering problem of a large amount of wind leakage in the 8106 comprehensive mining working face of the Carboniferous System under the influence of overlapping mining of two coal seams in Yongdingzhuang Mine, Datong Mining Area, this paper utilizes finite element numerical simulation software to study the wind leakage characteristics of the 8106 working face and the distribution range of the spontaneous combustion "three zones" of the mining area. The results show that, under the condition of external air leakage, the internal pressure of the goaf is greater than the external pressure, the upper pressure is greater than the lower pressure, and the seepage direction is from the top down and from the inside out. Under the condition of no external air leakage, the air leakage source is mainly concentrated in the air inlet lane.

View Article and Find Full Text PDF

Stylus pen-based ambient ionization mass spectrometry for the analysis of volatiles and semivolatiles from liquid, viscous, and solid samples.

Anal Chim Acta

February 2025

Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. Electronic address:

Background: Ambient ionization mass spectrometry (MS) has attracted significant attention due to its simplicity and ease of operation. Contactless, or field-induced, ionization is one of the ambient ionization techniques. In this approach, no direct electrical contact or additional voltage is required on the ionization-assisted substrate.

View Article and Find Full Text PDF
Article Synopsis
  • Predicting the growth of ascending aortic aneurysms (AscAA) is complex due to factors like aortic shape, tissue behavior, and blood flow.
  • The study uses a flow-structural growth and remodeling (FSG) model to simulate AscAA growth, starting with an initial tissue injury and using blood flow data from simulations to guide the model.
  • The findings suggest that adjusting model parameters, such as the direction of blood flow and tissue tension, significantly affects growth patterns, and this approach could be used for further patient-specific predictions in clinical settings.
View Article and Find Full Text PDF

Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.

View Article and Find Full Text PDF

Trace measurement of aerosol chemical composition in workplace atmospheres requires the development of high-throughput aerosol collectors that are compact, hand-portable, and can be operated using personal pumps. We describe the design and characterization of a compact, high flow, Turbulent-mixing Condensation Aerosol-in-Liquid Concentrator (TCALC) that allows direct collection of aerosols as liquid suspensions, for off-line chemical, biological, or microscopy analysis. The TCALC unit, measuring approximately 12 × 16 × 18 cm, operates at an aerosol sample flowrate of up to 10 L min, using rapid mixing of a hot flow saturated with water vapor and a cold aerosol sample flow, thereby promoting condensational growth of aerosol particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!