Osteoblasts are versatile cells involved in multiple whole-body processes, including bone formation and immune response. Secretory amounts and patterns of osteoblast-derived proteins such as osteopontin (OPN) and osteocalcin (OCN) modulate osteoblast function. However, the regulatory mechanism of OPN and OCN expression remains unknown. Here, we demonstrate that p54/p46 c-jun N-terminal kinase (JNK) inhibition suppresses matrix mineralization and OCN expression but increases OPN expression in MC3T3-E1 cells and primary osteoblasts treated with differentiation inducers, including ascorbic acid, bone morphogenic protein-2, or fibroblast growth factor 2. Preinhibition of JNK before the onset of differentiation increased the number of osteoblasts that highly express OPN but not OCN (OPN-OBs), indicating that JNK affects OPN secretory phenotype at the early stage of osteogenic differentiation. Additionally, we identified JNK2 isoform as being critically involved in OPN-OB differentiation. Microarray analysis revealed that OPN-OBs express characteristic transcription factors, cell surface markers, and cytokines, including glycoprotein hormone α2 and endothelial cell-specific molecule 1. Moreover, we found that inhibitor of DNA binding 4 is an important regulator of OPN-OB differentiation and that dual-specificity phosphatase 16, a JNK-specific phosphatase, functions as an endogenous regulator of OPN-OB induction. OPN-OB phenotype was also observed following LPS from stimulation during osteogenic differentiation. Collectively, these results suggest that the JNK-Id4 signaling axis is crucial in the control of OPN and OCN expression during osteoblastic differentiation.-Kusuyama, J., Amir, M. S., Albertson, B. G., Bandow, K., Ohnishi, T., Nakamura, T., Noguchi, K., Shima, K., Semba, I., Matsuguchi, T. JNK inactivation suppresses osteogenic differentiation, but robustly induces osteopontin expression in osteoblasts through the induction of inhibitor of DNA binding 4 (Id4).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201802465R | DOI Listing |
Adv Healthc Mater
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China.
The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.
View Article and Find Full Text PDFCirc Res
January 2025
British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).
Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.
Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.
Front Mol Biosci
January 2025
The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China.
Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Orthopedics, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China.
Background: Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!