Cytoskeletal synchronization of CHO cells with polymer functionalized fullerene C.

Biointerphases

Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695012, Kerala, India.

Published: March 2019

AI Article Synopsis

  • Recent advancements in fullerene C and its derivatives indicate they have diverse applications including solar cells, cosmetics, and enzyme inhibition.
  • This study specifically investigates the effects of dextran functionalized fullerene C (Dex-C) on Chinese Hamster Ovary cells.
  • Results showed that even at high concentrations, Dex-C treatment did not harm cell viability, DNA integrity, or mitochondrial and lysosomal functions, suggesting its potential for biomedical applications.

Article Abstract

Recent developments in the field of fullerene C and its derivatives suggest its suitability in a wide range of applications ranging from photovoltaic instruments, development of solar based cells, cosmetics to enzyme inhibition treatment, and so on. These innovative applications raised possibilities of intentional or oblivious human-particle contact leading to possible deleterious effects on human health. The current study deals with the interaction of dextran functionalized fullerene C (Dex-C) on Chinese Hamster Ovary cells. The results showed that the cell viability was not affected by Dex-C treatment even at higher concentrations. Treatment of Dex-C did not affect mitochondrial membrane potential and the integrity of lysosomal and cytoskeletal membrane. DNA ladder assay and nuclear staining showed that the DNA remains intact, and no fragmentation or nuclear condensation was visible. From flow cytometry analysis, the viable population of treated cells was seemed to be remaining similar to that of untreated cells. Hence, from the current result, it is concluded that Dex-C can be a potential candidate for various biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1116/1.5084002DOI Listing

Publication Analysis

Top Keywords

functionalized fullerene
8
cells
5
cytoskeletal synchronization
4
synchronization cho
4
cho cells
4
cells polymer
4
polymer functionalized
4
fullerene developments
4
developments field
4
field fullerene
4

Similar Publications

The synthesis of perfluoroalkylated fullerenes (PFAFs) holds significant importance due to their enhanced molecular stability, increased lipophilicity, and high electron affinity. Herein, we report a copper-catalyzed multicomponent reaction conducted under aerobic conditions, which enables the production of highly soluble PFAFs with half-wave reduction potentials similar to those of C. Furthermore, the challenges posed by C-F coupling in carbon signal assignment were addressed through fluorine-decoupled carbon spectroscopy, facilitating precise structural characterization of the perfluoroalkyl moieties.

View Article and Find Full Text PDF

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Diels-Alder Cycloaddition of Cyclopentadiene to C and Si and Their Endohedral Li Counterparts.

J Phys Chem A

January 2025

Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.

Both silicon and carbon are elements located in group 14 on the periodic table. Despite some similarities between these two elements, differences in reactivity are important, and whereas carbon is a central element in all known forms of life, silicon is barely found in biological systems. Here, we investigate the Diels-Alder cycloaddition reaction of cyclopentadiene (CP) and cyclopentasildiene (CP) with fullerenes C, Li@C, Si, and Li@Si using density functional theory methods.

View Article and Find Full Text PDF

In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential () of 75 mV RHE and a very low onset potential of -45 mV RHE. This work addresses fundamental questions about how functionalization on C changes the electron density on fullerene cages for high-performance HER electrocatalysis.

View Article and Find Full Text PDF

The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!