Membrane-Bound Protein Scaffolding in Diverse Hosts Using Thylakoid Protein CURT1A.

ACS Synth Biol

Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences , University of Copenhagen, 1871 Frederiksberg C , Denmark.

Published: April 2019

Protein scaffolding is a useful strategy for controlling the spatial arrangement of cellular components via protein-protein interactions. Protein scaffolding has primarily been used to colocalize soluble proteins in the cytoplasm, but many proteins require membrane association for proper function. Scaffolding at select membrane domains would provide an additional level of control over the distribution of proteins within a cell and could aid in exploiting numerous metabolic pathways that contain membrane-associated enzymes. We developed and characterized a membrane-bound protein scaffolding module based on the thylakoid protein CURT1A. This scaffolding module forms homo-oligomers in the membrane, causing proteins fused to CURT1A to cluster together at membrane surfaces. It is functional in diverse expression hosts and can scaffold proteins at thylakoid membranes in chloroplasts, endoplasmic reticulum in higher plants and Saccharomyces cerevisiae, and the inner membrane of Escherichia coli.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.8b00418DOI Listing

Publication Analysis

Top Keywords

protein scaffolding
16
membrane-bound protein
8
thylakoid protein
8
protein curt1a
8
scaffolding module
8
scaffolding
6
protein
5
proteins
5
membrane
5
scaffolding diverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!