Individuals widely use non-nutritive sweeteners (NNS) in attempts to lower their overall daily caloric intake, lose weight, and sustain a healthy diet. There are insufficient scientific data that support the safety of consuming NNS. However, recent studies have suggested that NNS consumption can induce gut microbiota dysbiosis and promote glucose intolerance in healthy individuals that may result in the development of type 2 diabetes mellitus (T2DM). This sequence of events may result in changes in the gut microbiota composition through microRNA (miRNA)-mediated changes. The mechanism(s) by which miRNAs alter gene expression of different bacterial species provides a link between the consumption of NNS and the development of metabolic changes. Another potential mechanism that connects NNS to metabolic changes is the molecular crosstalk between the insulin receptor (IR) and G protein-coupled receptors (GPCRs). Here, we aim to highlight the role of NNS in obesity and discuss IR-GPCR crosstalk and miRNA-mediated changes, in the manipulation of the gut microbiota composition and T2DM pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471792 | PMC |
http://dx.doi.org/10.3390/nu11030644 | DOI Listing |
Pol J Vet Sci
December 2024
School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan.
Diet has emerged as a key modulator of the gut microbiota, offering a potential strategy for disease prevention and management. This study investigated the effects of the Prescription Diet Gastrointestinal Biome (GB) on 7 healthy dogs and 16 dogs with chronic gastrointestinal diseases (GI dogs). Our investigation monitored changes in body weight and the Canine Inflammatory Bowel Disease Activity Index (CIBDAI) in 16 GI dogs fed a GB diet.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China.
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
Background: Cognitive impairment (CI) endangers the physical and mental health of patients in a significant manner, and it is expected that the number of people with CI in China will rise to 45.33 million by 2050. Therefore, CI has become a popular research topic.
View Article and Find Full Text PDFFront Aging
December 2024
Integrative Research Institute, Sacramento, CA, United States.
Background And Objectives: Aging clocks are computational models designed to measure biological age and aging rate based on age-related markers including epigenetic, proteomic, and immunomic changes, gut and skin microbiota, among others. In this narrative review, we aim to discuss the currently available aging clocks, ranging from epigenetic aging clocks to visual skin aging clocks.
Methods: We performed a literature search on PubMed/MEDLINE databases with keywords including: "aging clock," "aging," "biological age," "chronological age," "epigenetic," "proteomic," "microbiome," "telomere," "metabolic," "inflammation," "glycomic," "lifestyle," "nutrition," "diet," "exercise," "psychosocial," and "technology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!