The formation of polycyclic aromatic hydrocarbons (PAHs) is a strong global concern due to their harmful effects. To help the reduction of their emissions, a crucial understanding of their formation and a deep exploration of their growth mechanism is required. In the present work, the formation of benzo(a)pyrene was investigated computationally employing chrysene and benz(a)anthracene as starting materials. It was assumed a type of methyl addition/cyclization (MAC) was the valid growth mechanism in this case. Consequently, the reactions implied addition reactions, ring closures, hydrogen abstractions and intramolecular hydrogen shifts. These steps of the mechanism were computed to explore benzo(a)pyene formation. The corresponding energies of the chemical species were determined via hybrid density funcional theory (DFT), B3LYP/6-31+G(d,p) and M06-2X/6-311++G(d,p). Results showed that the two reaction routes had very similar trends energetically, the difference between the energy levels of the corresponding molecules was just 6.13 kJ/mol on average. The most stable structure was obtained in the benzo(a)anthracene pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470522PMC
http://dx.doi.org/10.3390/molecules24061040DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
8
aromatic hydrocarbons
8
growth mechanism
8
formation
5
formation mechanism
4
mechanism benzoapyrene
4
benzoapyrene carcinogenic
4
carcinogenic polycyclic
4
hydrocarbons pah
4
pah formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!