Cocoa quality depends on several parameters, such as cocoa variety, environmental growth conditions, cultivation technique, and post-harvest treatments applied to coca beans. In this work, we studied the impact of cocoa post-harvest processing on both microbial communities structure and volatile composition. Cocoa beans samples were fermented in wooden boxes in Ivory Coast at different time intervals with turning and without turning, and derived from pods stored for two different duration times. Cocoa beans were analyzed using a molecular fingerprinting method (PCR-DGGE) in order to detect variations in microbial communities' structure; this global analysis was coupled to SPME-GC-MS for assessing cocoa volatile profiles. The results showed that the main parameter that influenced microbial communities structure was fermentation time, followed by turning, whereas, pods storage duration had a minor impact. Similar results were obtained for aromatic profile, except for pods storage duration that significantly affected volatile compound production. Global statistical analysis using Canonical Correspondence Analysis (CCA), showed the relationship between microbial communities and volatile composition. Furthermore, this study allowed the identification of discriminating microbial and chemical markers of cocoa post-harvest processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2019.01.001DOI Listing

Publication Analysis

Top Keywords

volatile composition
12
cocoa beans
12
microbial communities
12
fermentation time
8
cocoa
8
composition cocoa
8
cocoa post-harvest
8
post-harvest processing
8
communities structure
8
pods storage
8

Similar Publications

Unlabelled: Evolution of cooperation is a major, extensively studied problem in evolutionary biology. Cooperation is beneficial for a population as a whole but costly for the bearers of social traits such that cheaters enjoy a selective advantage over cooperators. Here we focus on coevolution of cooperators and cheaters in a multi-level selection framework, by modeling competition among groups composed of cooperators and cheaters.

View Article and Find Full Text PDF

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

Exploring the Effects of Ionic Liquid on the Toughness of Palm Leaf Manuscripts.

Langmuir

January 2025

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility.

View Article and Find Full Text PDF

Determination of alkali metal elements in solid biomass fuel by laser-induced breakdown spectroscopy: Analysis and reduction of chemical matrix effects.

Anal Chim Acta

February 2025

School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:

Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.

View Article and Find Full Text PDF

Untargeted LC-HRMS analyses reveal metabolomic specificities between wine yeast strains selected for their malic acid production.

Food Chem

December 2024

BIOLAFFORT, 11 rue Aristide Berges, 33270 Floirac, France; UMR OENO, Université de Bordeaux, INRAE, INP, BSA, ISVV, 210 Chemin de Leysotte, 33882 Villenave d'Ornon, France. Electronic address:

The alcoholic fermentation of wine is mostly achieved by the species Saccharomyces cerevisiae that display a large variability for their ability to consume or produce malic acid. To better characterize the metabolism of such group of strains we explored their non-volatile metabolome using an untargeted LC-HRMS approach. The chemical classes and the putative structures of several hundred compounds where annotated using MS2 spectra using the SIRIUS software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!