The development of scaffolding materials that recapitulate the cellular microenvironment and provide cells with physicochemical cues is crucial for successfully engineering functional tissues that can aid in repairing damaged organs. The use of gold nanoparticles for tissue engineering and regenerative medicine has raised great interest in recent years. In this mini review, we describe the shape-dependent properties of gold nanoparticles, and their versatile use in creating tunable nanocomposite scaffolds with improved mechanical and electrical properties for tissue engineering. We further describe using gold nanoparticle-integrated scaffolds to achieve improved stem cells proliferation and differentiation. Finally, we discuss the main challenges and prospects for clinical translation of gold nanoparticles-hybrid scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b00472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!