3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering , National University of Singapore, 9 Engineering Drive 1 , Singapore 117575.

Published: April 2019

The ability of additive manufacturing to print mesh structure was exploited to fabricate highly efficient filtration meshes for oil/water separation applications. Through Direct Ink Writing (DIW) technique, pure cellulose acetate with a mesh architecture can be created easily, using cellulose acetate/ethyl acetate solution as the ink and simply drying off the solvent in ambient conditions. Besides conventional mesh structures, more complex structures can be fabricated in order to manipulate the pore size and hence tune the separation properties of the mesh. The superhydrophilic 3D-printed cellulose meshes are able to achieve a high separation efficiency of >95% as long as the average pore size is smaller than 280 μm. More importantly, the mesh that possesses an unconventional complex structure boasts a separation efficiency of ∼99% while maintaining a high water flux of ∼160 000 Lmh. The 3D-printed cellulose meshes are also able to separate oil substances of a wide range of viscosity, from highly viscous PDMS (∼97 cP) to nonviscous cyclohexane (∼1 cP) and are chemically resistant to extreme acidic and alkaline conditions. Moreover, the 3D-printed cellulose meshes also possess antioil-fouling/self-cleaning ability, which makes its surfaces resilient to contamination. In addition, the 3D-printed meshes do not suffer from surface inhomogeneity and interfacial adhesion issues as compared to the usual coated meshes. Such a robust yet practical system is highly applicable for highly efficient oil-water separation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b01753DOI Listing

Publication Analysis

Top Keywords

highly efficient
12
separation applications
12
3d-printed cellulose
12
cellulose meshes
12
oil/water separation
8
pore size
8
separation efficiency
8
cellulose
6
mesh
6
separation
6

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Asymptomatic Alzheimer's disease (AsymAD) refers to individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology, including beta-amyloid (Aβ) deposits, neuritic plaques and neurofibrillary tangles upon autopsy. Unlike AD cases, AsymAD exhibits low neuroinflammation and fewer soluble pathological tau species at synaptic levels. However, the link between these observations and the ability to counteract AD pathology is not fully understood.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the deposition of amyloid-beta and hyperphosphorylated tau (P-tau) proteins in the brain. P-tau accumulates in neurons and is strongly associated with AD severity and affected brain regions. However, only a subset of neurons in AD exhibit tau pathology.

View Article and Find Full Text PDF

Background: Our current understanding of the molecular mechanisms underlying amyloidogenesis in Alzheimer's Disease (AD) is limited by the lack of comprehensive models closely resembling human pathology. Human induced pluripotent stem cell (hiPSC) 3-dimensional (3D) models, such as brain organoids and neurospheres, are emerging as innovative approaches to model neurodegenerative diseases in vitro. However, they rely on hiPSC self-organization and are therefore characterized by low reproducibility and homogeneity.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) play multifaceted roles to precisely control expression of broad gene networks. These highly stable molecules are often accumulated in the mammalian brain and thought to serve as "memory molecules" that govern the long process of aging. Mounting evidence demonstrated circRNA dysregulation in the postmortem brains of Alzheimer's disease (AD).

View Article and Find Full Text PDF

Background: Objective and sensitive measures of everyday function are needed for accurate clinical diagnosis and evaluation of outcomes in clinical trials for dementia. However, most objective everyday function measures are difficult to administer and have not been validated against biomarkers of Alzheimer's disease (AD) neuropathology. This study evaluated the neuroimaging correlates of a highly sensitive, ecologically valid, and easily implementable performance-based test of function called the Virtual Kitchen Challenge (VKC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!