AI Article Synopsis

  • This study explores the effectiveness of functionalized porous polymers for capturing boric acid, a challenging contaminant in seawater, outperforming conventional reverse osmosis methods.
  • The synthesized adsorbents, PAF-1-NMDG and P2-NMDG, show up to 70% greater adsorption capacity and faster rates compared to a commercial resin, reducing boron levels significantly in synthetic seawater.
  • The frameworks can be easily regenerated for repeated use and maintain consistent performance across multiple cycles, showcasing their potential benefits in water treatment.

Article Abstract

This study demonstrates that functionalized, highly porous polymers are promising for the adsorptive capture of boric acid, a neutral contaminant that is difficult to remove from seawater using conventional reverse osmosis membranes. Appending N-methyl-d-glucamine (NMDG) to the pore walls of high-surface-area porous aromatic frameworks (PAFs) yields the adsorbents PAF-1-NMDG and P2-NMDG in a simple two-step synthesis. The boron-selective PAFs demonstrate adsorption capacities that are up to 70% higher than those of a commercial boron-selective resin, Amberlite IRA743, and markedly faster adsorption rates, owing to their higher NMDG loadings and greater porosities relative to the resin. Remarkably, PAF-1-NMDG is able to reduce the boron concentration in synthetic seawater from 2.91 to <0.5 ppm in less than 3 min at an adsorbent loading of only 0.3 mg mL . The boron adsorption rate constants of both frameworks, determined via a pseudo-second-order rate model, represent the highest values reported in the literature-in most cases orders of magnitude higher than those of other boron-selective adsorbents. The frameworks can also be readily regenerated via mild acid/base treatment and maintain constant boron adsorption capacities for at least 10 regeneration cycles. These results highlight the numerous advantages of PAFs over traditional porous polymers in water treatment applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201808027DOI Listing

Publication Analysis

Top Keywords

porous aromatic
8
aromatic frameworks
8
boric acid
8
functionalized porous
4
frameworks high-performance
4
high-performance adsorbents
4
adsorbents rapid
4
rapid removal
4
removal boric
4
acid water
4

Similar Publications

Natural-derived porous nanocarriers for the delivery of essential oils.

Chin J Nat Med

December 2024

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China. Electronic address:

Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.

View Article and Find Full Text PDF

In this research, a sustainable blue-green infrastructure (BGI) was developed to efficiently remove contaminants from stormwater through a combined use of modified porous asphalt (PA) and microalgae cultivation to provide a potential drinking water (DW) source. According to the results, the modified PA with powder activated carbon (PAC) could successfully reduce the level of total suspended solids (TSS), turbidity, polycyclic aromatic hydrocarbons (PAHs), oil and grease to below the DW standards but failed to efficiently remove some heavy metals (HMs) and nutrient pollutants. The results revealed that the treated stormwater was an appropriate medium for microalgae cultivation.

View Article and Find Full Text PDF

Hyper-cross-linked polymers (HCPs) enable the tailored synthesis of functionalized materials and provide a versatile design strategy for porous macroligands. Based on the prototypical triphenylphosphine (PPh) monomer, we investigate the role of the involved cross-linking reagents in the formation of polyphosphines and evaluate structure-activity relations for application in the catalytic CO hydrogenation: namely by varying the Friedel-Crafts catalyst, the cross-linker unit and the degree of cross-linking. The study of monomeric reactivities shows that phosphines are insufficiently activated by iron chloride catalyzed cross-linking and that the stronger aluminum chloride is required to ensure PPh incorporation.

View Article and Find Full Text PDF

The presence of complex dyes, which possess four or more aromatic rings, is pervasive in environmental matrices. Nanomaterials offer a promising avenue for their removal. In this study, we synthesized novel magnetic nanocomposites comprising nanochitosan (nCS) and iron nanoparticles through the application of green and conventional protocols.

View Article and Find Full Text PDF

Conventional post-modification methods usually face the fundamental challenge of balancing the high content of functional groups and large surface area for porous organic polymers (POPs). The reason, presumably, stems from ineffective and insufficient swelling of the porous structure of POP materials, which is detrimental to mass transfer and modification of functional groups, especially with large-sized ones. It is important to note that significant differences exist in the porous structures of POP materials in a solvent-free state after thermal activation and solvent swelling state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!