Plant growth is largely post-embryonic and depends on meristems that are active throughout the lifespan of an individual. Developmental patterns rely on the coordinated spatio-temporal expression of different genes, and the activity of transcription factors is particularly important during most morphogenetic processes. MADS-box genes constitute a transcription factor family in eukaryotes. In Arabidopsis, their proteins participate in all major aspects of shoot development, but their role in root development is still not well characterized. In this review we synthetize current knowledge pertaining to the function of MADS-box genes highly expressed in roots: XAL1, XAL2, ANR1 and AGL21, as well as available data for other MADS-box genes expressed in this organ. The role of Trithorax group and Polycomb group complexes on MADS-box genes' epigenetic regulation is also discussed. We argue that understanding the role of MADS-box genes in root development of species with contrasting architectures is still a challenge. Finally, we propose that MADS-box genes are key components of the gene regulatory networks that underlie various gene expression patterns, each one associated with the distinct developmental fates observed in the root. In the case of XAL1 and XAL2, their role within these networks could be mediated by regulatory feedbacks with auxin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15793 | DOI Listing |
Front Plant Sci
January 2025
Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States.
Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.
View Article and Find Full Text PDFJ Exp Bot
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.
View Article and Find Full Text PDFPlant Physiol
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China.
Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!