MADS-box genes underground becoming mainstream: plant root developmental mechanisms.

New Phytol

Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico.

Published: August 2019

Plant growth is largely post-embryonic and depends on meristems that are active throughout the lifespan of an individual. Developmental patterns rely on the coordinated spatio-temporal expression of different genes, and the activity of transcription factors is particularly important during most morphogenetic processes. MADS-box genes constitute a transcription factor family in eukaryotes. In Arabidopsis, their proteins participate in all major aspects of shoot development, but their role in root development is still not well characterized. In this review we synthetize current knowledge pertaining to the function of MADS-box genes highly expressed in roots: XAL1, XAL2, ANR1 and AGL21, as well as available data for other MADS-box genes expressed in this organ. The role of Trithorax group and Polycomb group complexes on MADS-box genes' epigenetic regulation is also discussed. We argue that understanding the role of MADS-box genes in root development of species with contrasting architectures is still a challenge. Finally, we propose that MADS-box genes are key components of the gene regulatory networks that underlie various gene expression patterns, each one associated with the distinct developmental fates observed in the root. In the case of XAL1 and XAL2, their role within these networks could be mediated by regulatory feedbacks with auxin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15793DOI Listing

Publication Analysis

Top Keywords

mads-box genes
24
root development
8
xal1 xal2
8
mads-box
7
genes
6
genes underground
4
underground mainstream
4
mainstream plant
4
root
4
plant root
4

Similar Publications

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum.

J Exp Bot

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.

The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C.

View Article and Find Full Text PDF

Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.

View Article and Find Full Text PDF

Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.

View Article and Find Full Text PDF

Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!