Background And Purpose: Diabetic retinopathy, a secondary complication of diabetes mellitus, can lead to irreversible vision loss. Currently, no treatment is approved for early phases of diabetic retinopathy. Modifications of the expression pattern of miRNAs could be involved in the early retinal damage of diabetic subjects. Therefore, we aimed at identification of dysregulated miRNAs-mRNA interactions that might be biomarkers and pharmacological targets for diagnosis and treatment of early diabetic retinopathy.

Methods: A focused set of miRNAs was predicted through a bioinformatic analysis accessing to Gene Expression Omnibus dataset and enrichment of information approach (GENEMANIA-Cytoscape). Identification of miRNAs-mRNA interactions was carried out with miRNET analysis. Diabetes was induced in C57BL6J mice by streptozotocin and samples analysed at 5 and 10 weeks after diabetes induction. Retinal ultrastructure of diabetic mice was analysed through electron microscopy. We used Real-time PCR, western blot analysis, elisa, and immunohistochemistry to study expression of miRNAs and possible targets of dysregulated miRNAs.

Key Results: We found that miR-20a-5p, miR-20a-3p, miR-20b, miR-106a-5p, miR-27a-5p, miR-27b-3p, miR-206-3p, and miR-381-3p were dysregulated in the retina and serum of diabetic mice. VEGF, brain-derived neurotrophic factor (BDNF), PPAR-α, and cAMP response element-binding protein 1 (CREB1) are targets of dysregulated miRNAs, which then modulated protein expression in diabetic retina. We found structural modifications in retinas from diabetic mice.

Conclusions And Implications: Serum and retina of diabetic mice express eight dysregulated miRNAs, which modified the expression of VEGF, BDNF, PPAR-α, and CREB1, before vasculopathy in diabetic retinas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555853PMC
http://dx.doi.org/10.1111/bph.14665DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
12
diabetic mice
12
diabetic
11
mirnas-mrna interactions
8
targets dysregulated
8
bdnf ppar-α
8
dysregulated mirnas
8
expression
6
mirnas
5
dysregulated
5

Similar Publications

WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models.

Sensors (Basel)

December 2024

Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico.

Accurate synthetic image generation is crucial for addressing data scarcity challenges in medical image classification tasks, particularly in sensor-derived medical imaging. In this work, we propose a novel method using a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and nearest-neighbor interpolation to generate high-quality synthetic images for diabetic retinopathy classification. Our approach enhances training datasets by generating realistic retinal images that retain critical pathological features.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

Telomere shortening has been linked to type 2 diabetes (T2D) and its complications. This study aims to determine whether leukocyte telomere length (LTL) could be a useful marker in predicting the onset of complications in patients suffering from T2D. Enrolled study subjects were 147 T2D patients.

View Article and Find Full Text PDF

To determine the correlations between six serological inflammatory markers, namely the systemic immune-inflammation index (SII), systemic inflammatory response index (SIRI), aggregate index of systemic inflammation (AISI), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR), and various stages of type 2 diabetic retinopathy (T2DR). Additionally, the diagnostic value of these markers in T2DR was evaluated. Clinical data were collected from a total of 397 patients with type 2 diabetes who visited the ophthalmology department at Mian Yang Central Hospital and the Affiliated Hospital of Southwest Medical University from January 2023 to December 2023.

View Article and Find Full Text PDF

Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.

Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!