Monoclonal antibody interchain disulfide bond reduction was observed in a Chinese Hamster Ovary manufacturing process that used single-use technologies. A similar reduction has been reported for processes that involved high mechanical shear recovery unit operations, such as continuous flow centrifugation and when the clarified harvest was stored under low dissolved oxygen (DO) conditions (Trexler-Schmidt et al., 2010. Biotechnology and Bioengineering, 106(3), 452-461). The work described here identifies disposable depth filtration used during cell culture harvest operations as a shear-inducing unit operation causing cell lysis. As a result, reduction of antibody interchain disulfide bonds was observed through the same mechanisms described for continuous flow centrifugation. Small-scale depth-filtration models were developed, and the differential pressure (Δ P) of the primary depth filter was identified as the key factor contributing to cell lysis. Strong correlations of Δ P and cell lysis were generated by measuring the levels of lactate dehydrogenase and thiol in the filtered harvest material. A simple risk mitigation strategy was implemented during manufacturing by providing an air overlay to the headspace of a single-use storage bag to maintain sufficient DO in the clarified harvest. In addition, enzymatic characterization studies determined that thioredoxin reductase and glucose-6-phosphate dehydrogenase are critical enzymes involved in antibody reduction in a nicotinamide adenine dinucleotide phosphate (NADP )/NADPH-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.26964 | DOI Listing |
Biophys Rep (N Y)
January 2025
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA; Department of Chemistry, Rice University, Houston, Texas 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA. Electronic address:
All living systems display remarkable spatial and temporal precision, despite operating in intrinsically fluctuating environments. It is even more surprising given that biological phenomena are regulated by multiple chemical reactions that are also random. While the underlying molecular mechanisms of surprisingly high precision in biology remain not well understood, a novel theoretical picture that relies on the coupling of relevant stochastic processes has been recently proposed and applied to explain different phenomena.
View Article and Find Full Text PDFFront Antibiot
January 2025
Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany.
Because of the global spread of multi- and pan-resistant bacteria, there is a need to identify, research, and develop new strategies to combat these pathogens. In a previous proof-of-concept study, we presented an innovative strategy by genetically modifying lytic T7 bacteriophages. We integrated DNA fragments encoding for derivatives of the antimicrobial peptide (AMP) apidaecin into the phage genome to induce the production and release of apidaecin within the T7 infection cycle, thereby also targeting phage-resistant bacteria.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China. Electronic address:
Cr(VI) is widely used in industry and has high toxicity, making it one of the most common environmental pollutants. Long-term exposure to Cr(VI) can cause metabolic disorders and tissue damage. However, the effects of Cr(VI) on liver and gut microbes in fish have rarely been reported.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!