This article presents a versatile soft crawling robot capable of rapid and effective locomotion. The robot mainly consists of two vacuum-actuated spring actuators and two electrostatic actuators. By programming the actuation sequences of different actuators, the robot is able to achieve two basic modes of locomotion: linear motion and turning. Subsequently, we have developed analytical models to interpret the static actuation performance of the robot body, including linear and bending motions. Moreover, an empirical dynamic model is also developed to optimize the locomotion speed in terms of frequency and duty cycle of the actuation signal. Furthermore, with the help of the strong electroadhesion force and fast response of the deformable body, the soft robot achieves a turning speed of 15.09°/s, which is one of the fastest among existing soft crawling robots to the best of our knowledge. In addition to the rapid and effective locomotion, the soft crawling robot can also achieve multiple impressive functions, including obstacle navigation in confined spaces, climbing a vertical wall with a speed of 6.67 mm/s (0.049 body length/s), carrying a payload of 69 times its self-weight on a horizontal surface, crossing over a 2 cm (0.15 body length) gap, and kicking a ball.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2018.0124DOI Listing

Publication Analysis

Top Keywords

soft crawling
16
crawling robot
12
versatile soft
8
rapid effective
8
effective locomotion
8
robot achieve
8
robot
7
locomotion
5
crawling
4
robot rapid
4

Similar Publications

Thermal Gradient-Driven Heterogeneous Actuation of Liquid Crystal Elastomers for a Crawling Robot.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.

Emerging soft robots based on liquid crystal elastomers (LCEs) exhibit remarkable capabilities for large reversible shape morphing, enabling them to adapt to complex environments and perform diverse tasks such as locomotion and camouflage. Despite extensive studies, current methods for locally controlled actuation of LCE-based soft robots often involve intricate structural design, complex programming of LCEs, incorporation of multiple materials, or complex actuation methods. Here, we present a simple and efficient approach to achieve multiple deformation modes within a simply programmed LCE structure by harnessing Joule heating-induced thermal gradients across the LCE volume.

View Article and Find Full Text PDF

A Symmetrical Leech-Inspired Soft Crawling Robot Based on Gesture Control.

Biomimetics (Basel)

January 2025

Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin 300072, China.

This paper presents a novel soft crawling robot controlled by gesture recognition, aimed at enhancing the operability and adaptability of soft robots through natural human-computer interactions. The Leap Motion sensor is employed to capture hand gesture data, and Unreal Engine is used for gesture recognition. Using the UE4Duino, gesture semantics are transmitted to an Arduino control system, enabling direct control over the robot's movements.

View Article and Find Full Text PDF

The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains.

View Article and Find Full Text PDF

Untethered Soft Robots Based on 1D and 2D Nanomaterials.

Adv Mater

January 2025

School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.

View Article and Find Full Text PDF

Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity.

Adv Mater

January 2025

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.

Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!