Optoelectronic Properties of Ternary I-III-VI Semiconductor Nanocrystals: Bright Prospects with Elusive Origins.

J Phys Chem Lett

Debye Institute for Nanomaterials Science , Utrecht University, P.O. Box 80 000, 3508 TA Utrecht , The Netherlands.

Published: April 2019

Colloidal nanocrystals of ternary I-III-VI semiconductors are emerging as promising alternatives to Cd- and Pb-chalcogenide nanocrystals because of their inherently lower toxicity, while still offering widely tunable photoluminescence. These properties make them promising materials for a variety of applications. However, the realization of their full potential has been hindered by both their underdeveloped synthesis and the poor understanding of their optoelectronic properties, whose origins are still under intense debate. In this Perspective, we provide novel insights on the latter aspect by critically discussing the accumulated body of knowledge on I-III-VI nanocrystals. From our analysis, we conclude that the luminescence in these nanomaterials most likely originates from the radiative recombination of a delocalized conduction band electron with a hole localized at the group-I cation, which results in broad bandwidths, large Stokes shifts, and long exciton lifetimes. Finally, we highlight the remaining open questions and propose experiments to address them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452418PMC
http://dx.doi.org/10.1021/acs.jpclett.8b03653DOI Listing

Publication Analysis

Top Keywords

optoelectronic properties
8
ternary i-iii-vi
8
properties ternary
4
i-iii-vi semiconductor
4
nanocrystals
4
semiconductor nanocrystals
4
nanocrystals bright
4
bright prospects
4
prospects elusive
4
elusive origins
4

Similar Publications

Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.

View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.

View Article and Find Full Text PDF

Controllable Growth of Monolayer and Bilayer WSe by Liquid-Phase Precursor via Chemical Vapor Deposition for Photodetection.

Nanomaterials (Basel)

December 2024

School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

Two-dimensional WSe nanosheets have received increasing attention due to their excellent optoelectronic properties. Solid precursors, such as WO and Se powders, have been extensively employed to grow WSe nanosheets by the chemical vapor deposition (CVD) method. However, the high melting point of WO results in heterogeneous nucleation sites and nonuniform growth of the WSe nanosheet.

View Article and Find Full Text PDF

Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.

View Article and Find Full Text PDF

The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!