The friction of graphene on mica was studied using lateral force microscopy. We observed that intercalation of alcohol molecules significantly increases the friction of graphene, as compared to water. An increase of 1.8, 2.4, and 5.9 times in friction between the atomic force microscopy tip and single-layer graphene was observed for methanol, ethanol, and 2-propanol, respectively. Moreover, the friction of graphene is found to be higher for single-layer graphene than for multilayer graphene. We attribute the increase in friction to the additional vibrational modes of alcohol molecules. The significant variation of the frictional characteristics of graphene at the nanoscale by altering the intercalant could open up applications for the next-generation nanolubricants and nanodevices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459005 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.9b00471 | DOI Listing |
Small
December 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China.
Static friction, a ubiquitous physical phenomenon, plays a significant role in natural processes and industrial applications. Its influence is particularly notable in the field of controlled micromanipulation and precision manufacturing, where static friction often exceeds kinetic friction and leads to material damage and unpredictable behaviors. In this study, we report the first experimental observation of the elimination of static friction peak in sliding micrometer contacts of layered materials, achieved through a technique involving selective etching of the amorphous edges of single crystalline surfaces.
View Article and Find Full Text PDFNanoscale
December 2024
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Water-based nanofluidic devices, where water is confined in Angstrom scale nanochannels, are widely encountered in nanotechnology. Although it is known that the material of confinement has a significant influence on the properties of confined water, much less is known of the relationship between the structure of nanoconfined water and its properties, impacting the design of nanofluidic devices. We explore the behavior of a confined water monolayer within a bilayer molybdenum disulfide (MoS) structure, comparing its behavior with that within bilayer graphene.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Enterprise Engineering "Mario Lucertini", University of Rome Tor Vergata, 00133 Rome, Italy.
Copper, though highly conductive, requires improved wear resistance and thermal dissipation in applications that involve continuous movement and current-induced vibrations, such as power breakers. Conventional solutions, such as copper-tungsten alloys or lubricant use, face limitations in durability, friction, or environmental impact. This study explores the development of copper-graphene (Cu-GNPs) composite coatings using pulsed electrodeposition to enhance the tribological, thermal, and mechanical properties of circuit breaker components by adopting an industrially scalable technique.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Exploring ways to improve the performance of rotating bands is of great importance for enhancing the power of modern artillery. This study prepared graphene oxide-coated Nylon (GO-Nylon) and Nylon samples based on nylon rotating bands in artillery systems to investigate the feasibility of introducing GO-coated nylon rotating band materials to enhance their tribological and thermal properties. The friction behavior and thermal effects of these two surfaces were analyzed under different external loads and surface roughness conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!