Fungal Extracellular Vesicles with a Focus on Proteomic Analysis.

Proteomics

Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.

Published: April 2019

Extracellular vesicles (EVs) perform crucial functions in cell-cell communication. The packaging of biomolecules into membrane-enveloped vesicles prior to release into the extracellular environment provides a mechanism for coordinated delivery of multiple signals at high concentrations that is not achievable by classical secretion alone. Most of the understanding of the biosynthesis, composition, and function of EVs comes from mammalian systems. Investigation of fungal EVs, particularly those released by pathogenic yeast species, has revealed diverse cargo including proteins, lipids, nucleic acids, carbohydrates, and small molecules. Fungal EVs are proposed to function in a variety of biological processes including virulence and cell wall homeostasis with a focus on host-pathogen interactions. EVs also carry signals between fungal cells allowing for a coordinated attack on a host during infection. Research on fungal EVs in still in its infancy. Here a review of the literature thus far with a focus on proteomic analysis is provided with respect to techniques, results, and prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201800232DOI Listing

Publication Analysis

Top Keywords

fungal evs
12
extracellular vesicles
8
focus proteomic
8
proteomic analysis
8
evs
6
fungal
5
fungal extracellular
4
vesicles focus
4
analysis extracellular
4
vesicles evs
4

Similar Publications

Rapid and accurate diagnostics are needed to effectively detect and treat primary amoebic meningoencephalitis (PAM) caused by (). Delayed diagnosis and similarities to other causes of meningitis contribute to a case mortality rate of >97%. Thus, there is an unmet medical need for a non-invasive liquid biopsy diagnostic method.

View Article and Find Full Text PDF

Strategies for Survival of in Host Cells.

Int J Mol Sci

January 2025

College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.

, a common pathogen, is capable of producing a significant array of toxins and can develop biofilms or small colony variants (SCVs) to evade detection by the immune system and resist the effects of antibiotics. Its ability to persist for extended periods within host cells has led to increased research interest. This review examines the process of internalization of , highlighting the impact of its toxins and adhesion factors on host cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method.

View Article and Find Full Text PDF

Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.

View Article and Find Full Text PDF

(APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!